• Title/Summary/Keyword: Prediction models

Search Result 4,556, Processing Time 0.034 seconds

Short-and Mid-term Power Consumption Forecasting using Prophet and GRU (Prophet와 GRU을 이용하여 단중기 전력소비량 예측)

  • Nam Rye Son;Eun Ju Kang
    • Smart Media Journal
    • /
    • v.12 no.11
    • /
    • pp.18-26
    • /
    • 2023
  • The building energy management system (BEMS), a system designed to efficiently manage energy production and consumption, aims to address the variable nature of power consumption within buildings due to their physical characteristics, necessitating stable power supply. In this context, accurate prediction of building energy consumption becomes crucial for ensuring reliable power delivery. Recent research has explored various approaches, including time series analysis, statistical analysis, and artificial intelligence, to predict power consumption. This paper analyzes the strengths and weaknesses of the Prophet model, choosing to utilize its advantages such as growth, seasonality, and holiday patterns, while also addressing its limitations related to data complexity and external variables like climatic data. To overcome these challenges, the paper proposes an algorithm that combines the Prophet model's strengths with the gated recurrent unit (GRU) to forecast short-term (2 days) and medium-term (7 days, 15 days, 30 days) building energy consumption. Experimental results demonstrate the superior performance of the proposed approach compared to conventional GRU and Prophet models.

Combination of 18F-Fluorodeoxyglucose PET/CT Radiomics and Clinical Features for Predicting Epidermal Growth Factor Receptor Mutations in Lung Adenocarcinoma

  • Shen Li;Yadi Li;Min Zhao;Pengyuan Wang;Jun Xin
    • Korean Journal of Radiology
    • /
    • v.23 no.9
    • /
    • pp.921-930
    • /
    • 2022
  • Objective: To identify epidermal growth factor receptor (EGFR) mutations in lung adenocarcinoma based on 18F-fluorodeoxyglucose (FDG) PET/CT radiomics and clinical features and to distinguish EGFR exon 19 deletion (19 del) and exon 21 L858R missense (21 L858R) mutations using FDG PET/CT radiomics. Materials and Methods: We retrospectively analyzed 179 patients with lung adenocarcinoma. They were randomly assigned to training (n = 125) and testing (n = 54) cohorts in a 7:3 ratio. A total of 2632 radiomics features were extracted from the tumor region of interest from the PET (1316) and CT (1316) images. Six PET/CT radiomics features that remained after the feature selection step were used to calculate the radiomics model score (rad-score). Subsequently, a combined clinical and radiomics model was constructed based on sex, smoking history, tumor diameter, and rad-score. The performance of the combined model in identifying EGFR mutations was assessed using a receiver operating characteristic (ROC) curve. Furthermore, in a subsample of 99 patients, a PET/CT radiomics model for distinguishing 19 del and 21 L858R EGFR mutational subtypes was established, and its performance was evaluated. Results: The area under the ROC curve (AUROC) and accuracy of the combined clinical and PET/CT radiomics models were 0.882 and 81.6%, respectively, in the training cohort and 0.837 and 74.1%, respectively, in the testing cohort. The AUROC and accuracy of the radiomics model for distinguishing between 19 del and 21 L858R EGFR mutational subtypes were 0.708 and 66.7%, respectively, in the training cohort and 0.652 and 56.7%, respectively, in the testing cohort. Conclusion: The combined clinical and PET/CT radiomics model could identify the EGFR mutational status in lung adenocarcinoma with moderate accuracy. However, distinguishing between EGFR 19 del and 21 L858R mutational subtypes was more challenging using PET/CT radiomics.

Refractive-index Prediction for High-refractive-index Optical Glasses Based on the B2O3-La2O3-Ta2O5-SiO2 System Using Machine Learning

  • Seok Jin Hong;Jung Hee Lee;Devarajulu Gelija;Woon Jin Chung
    • Current Optics and Photonics
    • /
    • v.8 no.3
    • /
    • pp.230-238
    • /
    • 2024
  • The refractive index is a key material-design parameter, especially for high-refractive-index glasses, which are used for precision optics and devices. Increased demand for high-precision optical lenses produced by the glass-mold-press (GMP) process has spurred extensive studies of proper glass materials. B2O3, SiO2, and multiple heavy-metal oxides such as Ta2O5, Nb2O5, La2O3, and Gd2O3 mostly compose the high-refractive-index glasses for GMP. However, due to many oxides including up to 10 components, it is hard to predict the refractivity solely from the composition of the glass. In this study, the refractive index of optical glasses based on the B2O3-La2O3-Ta2O5-SiO2 system is predicted using machine learning (ML) and compared to experimental data. A dataset comprising up to 271 glasses with 10 components is collected and used for training. Various ML algorithms (linear-regression, Bayesian-ridge-regression, nearest-neighbor, and random-forest models) are employed to train the data. Along with composition, the polarizability and density of the glasses are also considered independent parameters to predict the refractive index. After obtaining the best-fitting model by R2 value, the trained model is examined alongside the experimentally obtained refractive indices of B2O3-La2O3-Ta2O5-SiO2 quaternary glasses.

Long-Term Science Goals with In Situ Observations at the Sun-Earth Lagrange Point L4

  • Dae-Young Lee;Rok-Soon Kim;Kyung-Eun Choi;Jungjoon Seough;Junga Hwang;Dooyoung Choi;Ji-Hyeon Yoo;Seunguk Lee;Sung Jun Noh;Jongho Seon;Kyung-Suk Cho;Kwangsun Ryu;Khan-Hyuk Kim;Jong-Dae Sohn;Jae-Young Kwak;Peter H. Yoon
    • Journal of Astronomy and Space Sciences
    • /
    • v.41 no.1
    • /
    • pp.1-15
    • /
    • 2024
  • The Korean heliospheric community, led by the Korea Astronomy and Space Science Institute (KASI), is currently assessing the viability of deploying a spacecraft at the Sun-Earth Lagrange Point L4 in collaboration with National Aeronautics and Space Administration (NASA). The aim of this mission is to utilize a combination of remote sensing and in situ instruments for comprehensive observations, complementing the capabilities of the L1 and L5 observatories. The paper outlines longterm scientific objectives, underscoring the significance of multi-point in-situ observations to better understand critical heliospheric phenomena. These include coronal mass ejections, magnetic flux ropes, heliospheric current sheets, kinetic waves and instabilities, suprathermal electrons and solar energetic particle events, as well as remote detection of solar radiation phenomena. Furthermore, the mission's significance in advancing space weather prediction and space radiation exposure assessment models through the integration of L4 observations is discussed. This article is concluded with an emphasis on the potential of L4 observations to propel advancements in heliospheric science.

The Seasonal Forecast Characteristics of Tropical Cyclones from the KMA's Global Seasonal Forecasting System (GloSea6-GC3.2) (기상청 기후예측시스템(GloSea6-GC3.2)의 열대저기압 계절 예측 특성)

  • Sang-Min Lee;Yu-Kyung Hyun;Beomcheol Shin;Heesook Ji;Johan Lee;Seung-On Hwang;Kyung-On Boo
    • Atmosphere
    • /
    • v.34 no.2
    • /
    • pp.97-106
    • /
    • 2024
  • The seasonal forecast skill of tropical cyclones (TCs) in the Northern Hemisphere from the Korea Meteorological Administration (KMA) Global Seasonal Forecast System version 6 (GloSea6) hindcast has been verified for the period 1993 to 2016. The operational climate prediction system at KMA was upgraded from GloSea5 to GloSea6 in 2022, therefore further validation was warranted for the seasonal predictability and variability of this new system for TC forecasts. In this study, we examine the frequency, track density, duration, and strength of TCs in the North Indian Ocean, the western North Pacific, the eastern North Pacific, and the North Atlantic against the best track data. This methodology follows a previous study covering the period 1996 to 2009 published in 2020. GloSea6 indicates a higher frequency of TC generation compared to observations in the western North Pacific and the eastern North Pacific, suggesting the possibility of more TC generation than GloSea5. Additionally, GloSea6 exhibits better interannual variability of TC frequency, which shows relatively good correlation with observations in the North Atlantic and the western North Pacific. Regarding TC intensity, GloSea6 still underestimates the minimum surface pressures and maximum wind speeds from TCs, as is common among most climate models due to lower horizontal resolutions. However, GloSea6 is likely capable of simulating slightly stronger TCs than GloSea5, partly attributed to more frequent 6-hourly outputs compared to the previous daily outputs.

Rain Attenuation Prediction at Different Time Percentages for Ku, K, and Ka Bands Satellite Communication Systems over Nigeria

  • Orji Prince Orji;Obiegbuna Dominic Chukwuebuka;Okoro Eucharia Chidinma;Ugonabo Obiageli Josephine;Okezuonu Patrick Chinedu;Iyida Evaristus Uzochukwu;Ugwu Chukwuebuka Jude;Menteso Firew Meka;Ikechukwu Ugochukwu Chiemeka
    • Journal of Astronomy and Space Sciences
    • /
    • v.41 no.1
    • /
    • pp.25-33
    • /
    • 2024
  • This paper evaluates the influence of rainfall on propagated signal at different time exceedance percentages of an average year, over the climate zones of the country. Specifically, it demonstrates critical and non critical signal fade or signal outage time exceedance (0.001% to 1%) for Ku, K, and Ka-band systems in an average year. The study was carried out using meteorological data made available by the Nigerian Meteorological Agency (NiMet) over a period of 10 years (2009-2018). The four climate zones in the country were represented by five (5) locations; Maidugiri (warm desert climate), Sokoto (tropical dry climate), Port Harcourt (tropical monsoon climate), Abuja and Enugu (tropical savanna climate). The parameters were simulated into the International Telecommunications Union Recommended (ITU-R) models for rain attenuation over the tropics and results presented using MatLab and Origin Lab. Results of Ku band propagations showed that only locations in the tropical savanna and tropical monsoon climates experienced total signal outage for time percentage exceedance equal to or below 0.01% for both horizontal and vertical polarizations. At K band propagations, the five locations showed to have experienced signal outage at time exceedance equal to and below 0.01%, almost same was recorded for the Ka-band propagation. It was also observed that horizontal and vertical polarization of signal had slightly different rain attenuation values for the studied bands at the five locations, with horizontal polarization having higher values than vertical polarization.

Inhalation Configuration Detection for COVID-19 Patient Secluded Observing using Wearable IoTs Platform

  • Sulaiman Sulmi Almutairi;Rehmat Ullah;Qazi Zia Ullah;Habib Shah
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.6
    • /
    • pp.1478-1499
    • /
    • 2024
  • Coronavirus disease (COVID-19) is an infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. COVID-19 become an active epidemic disease due to its spread around the globe. The main causes of the spread are through interaction and transmission of the droplets through coughing and sneezing. The spread can be minimized by isolating the susceptible patients. However, it necessitates remote monitoring to check the breathing issues of the patient remotely to minimize the interactions for spread minimization. Thus, in this article, we offer a wearable-IoTs-centered framework for remote monitoring and recognition of the breathing pattern and abnormal breath detection for timely providing the proper oxygen level required. We propose wearable sensors accelerometer and gyroscope-based breathing time-series data acquisition, temporal features extraction, and machine learning algorithms for pattern detection and abnormality identification. The sensors provide the data through Bluetooth and receive it at the server for further processing and recognition. We collect the six breathing patterns from the twenty subjects and each pattern is recorded for about five minutes. We match prediction accuracies of all machine learning models under study (i.e. Random forest, Gradient boosting tree, Decision tree, and K-nearest neighbor. Our results show that normal breathing and Bradypnea are the most correctly recognized breathing patterns. However, in some cases, algorithm recognizes kussmaul well also. Collectively, the classification outcomes of Random Forest and Gradient Boost Trees are better than the other two algorithms.

Development of Thermal Performance Prediction for Large Planar Military Antenna with Multi-Cooling Channels (다중 냉각유로가 적용된 수랭식 군사용 대면적 안테나의 열성능 예측 기술)

  • YeRyun Lee;SungWook Jang;PilGyeong Choi;NohJin Kwak;JunJung Park
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.43-50
    • /
    • 2024
  • Large planar military antenna boasts a range of electrical components, including TRA(Transmit-Receive Assembly), signal processors, etc. which engage in computations and calculations. These processes generate a significant amount of heat, leading to unforeseen consequences for the equipment. To mitigate these adverse effects, it's imperative to implement a cooling system that can effectively reduce heat-related issues. Given the antenna's intricate nature and the multitude of components it houses, a two-step estimation process is necessary. The first step involves a comprehensive model calculation to determine the total flow characteristics, while the second step entails a thermal analysis of individual TRA set. In this study, we depicted an antenna set using simplified 3D models of its components, considering their material and thermal properties. The sequential analysis process facilitated the calculation of branched flow rates, providing insights into the individual TRA. This approach also allowed us to design a cooling system for the TRA set, assessing its thermal stability in high-temperature environments. To ensure the optimal performance of TRA, breaking down the analysis into stages based on the cooling system's structure can assist operators in predicting numerical results more effectively.

A Study on Trend Using Time Series Data (시계열 데이터 활용에 관한 동향 연구)

  • Shin-Hyeong Choi
    • Advanced Industrial SCIence
    • /
    • v.3 no.1
    • /
    • pp.17-22
    • /
    • 2024
  • History, which began with the emergence of mankind, has a means of recording. Today, we can check the past through data. Generated data may only be generated and stored at a certain moment, but it is not only continuously generated over a certain time interval from the past to the present, but also occurs in the future, so making predictions using it is an important task. In order to find out trends in the use of time series data among numerous data, this paper analyzes the concept of time series data, analyzes Recurrent Neural Network and Long-Short Term Memory, which are mainly used for time series data analysis in the machine learning field, and analyzes the use of these models. Through case studies, it was confirmed that it is being used in various fields such as medical diagnosis, stock price analysis, and climate prediction, and is showing high predictive results. Based on this, we will explore ways to utilize it in the future.

Curvature ductility of confined HSC beams

  • Bouzid Haytham;Idriss Rouaz;Sahnoune Ahmed;Benferhat Rabia;Tahar Hassaine Daouadji
    • Structural Engineering and Mechanics
    • /
    • v.89 no.6
    • /
    • pp.579-588
    • /
    • 2024
  • The present paper investigates the curvature ductility of confined reinforced concrete (RC) beams with normal (NSC) and high strength concrete (HSC). For the purpose of predicting the curvature ductility factor, an analytical model was developed based on the equilibrium of internal forces of confined concrete and reinforcement. In this context, the curvatures were calculated at first yielding of tension reinforcement and at ultimate when the confined concrete strain reaches the ultimate value. To best simulate the situation of confined RC beams in flexure, a modified version of an ancient confined concrete model was adopted for this study. In order to show the accuracy of the proposed model, an experimental database was collected from the literature. The statistical comparison between experimental and predicted results showed that the proposed model has a good performance. Then, the data generated from the validated theoretical model were used to train the artificial neural network (ANN) prediction model. The R2 values for theoretical and experimental results are equal to 0.98 and 0.95, respectively which proves the high performance of the ANN model. Finally, a parametric study was implemented to analyze the effect of different parameters on the curvature ductility factor using theoretical and ANN models. The results are similar to those extracted from experiments, where the concrete strength, the compression reinforcement ratio, the yield strength, and the volumetric ratio of transverse reinforcement have a positive effect. In contrast, the ratio and the yield strength of tension reinforcement have a negative effect.