DOI QR코드

DOI QR Code

Long-Term Science Goals with In Situ Observations at the Sun-Earth Lagrange Point L4

  • Dae-Young Lee (Department of Astronomy and Space Science, Chungbuk National University) ;
  • Rok-Soon Kim (Space Science Division, Korea Astronomy and Space Science Institute) ;
  • Kyung-Eun Choi (Space Sciences Laboratory, University of California) ;
  • Jungjoon Seough (Space Science Division, Korea Astronomy and Space Science Institute) ;
  • Junga Hwang (Space Science Division, Korea Astronomy and Space Science Institute) ;
  • Dooyoung Choi (Department of Astronomy and Space Science, Chungbuk National University) ;
  • Ji-Hyeon Yoo (Department of Astronomy and Space Science, Chungbuk National University) ;
  • Seunguk Lee (Department of Astronomy and Space Science, Chungbuk National University) ;
  • Sung Jun Noh (ISR-1: Space Science and Applications, Los Alamos National Laboratory) ;
  • Jongho Seon (Department of Astronomy & Space Science, College of Applied Sciences, Kyung-Hee University) ;
  • Kyung-Suk Cho (Space Science Division, Korea Astronomy and Space Science Institute) ;
  • Kwangsun Ryu (Satellite Technology Research Center, KAIST) ;
  • Khan-Hyuk Kim (Department of Astronomy & Space Science, College of Applied Sciences, Kyung-Hee University) ;
  • Jong-Dae Sohn (Space Science Division, Korea Astronomy and Space Science Institute) ;
  • Jae-Young Kwak (Space Science Division, Korea Astronomy and Space Science Institute) ;
  • Peter H. Yoon (Institute for Physical Science and Technology, University of Maryland)
  • 투고 : 2023.12.29
  • 심사 : 2024.01.22
  • 발행 : 2024.03.15

초록

The Korean heliospheric community, led by the Korea Astronomy and Space Science Institute (KASI), is currently assessing the viability of deploying a spacecraft at the Sun-Earth Lagrange Point L4 in collaboration with National Aeronautics and Space Administration (NASA). The aim of this mission is to utilize a combination of remote sensing and in situ instruments for comprehensive observations, complementing the capabilities of the L1 and L5 observatories. The paper outlines longterm scientific objectives, underscoring the significance of multi-point in-situ observations to better understand critical heliospheric phenomena. These include coronal mass ejections, magnetic flux ropes, heliospheric current sheets, kinetic waves and instabilities, suprathermal electrons and solar energetic particle events, as well as remote detection of solar radiation phenomena. Furthermore, the mission's significance in advancing space weather prediction and space radiation exposure assessment models through the integration of L4 observations is discussed. This article is concluded with an emphasis on the potential of L4 observations to propel advancements in heliospheric science.

키워드

과제정보

Dae-Young Lee acknowledges support from the National Research Foundation of Korea under grant NRF-2019 R1A2C1003140. This work was also supported by the Korea Astronomy and Space Science Institute under the R&D program (2024E90100). The work of K.-E.C. was supported by NASA grants 80NSSC22K0433, 80NSSC22K0522, and NASA's Living with a Star (LWS) program (contract 80NSSC20K0218). The work of K.R. was partly supported by the National Research Foundation of Korea under grant NRF-2021M1A3 A4A06086639. Wilcox Solar Observatory data used in this study was obtained via the web site http://wso.stanford.edu at 2024:03:04_21:40:59 PST courtesy of J.T. Hoeksema.

참고문헌

  1. Agapitov OV, Dudok de Wit T, Mozer FS, Bonnell JW, Drake JF, et al., Sunward-propagating whistler waves collocated with localized magnetic field holes in the solar wind: Parker Solar Probe observations at 35.7 R radii, Astrophys. J. Lett. 891, L20 (2020). https://doi.org/10.3847/2041-8213/ab799c
  2. Bale SD, Badman ST, Bonnell JW, Bowen TA, Burgess D, et al., Highly structured slow solar wind emerging from an equatorial coronal hole, Nature. 576, 237-242 (2019). https://doi.org/10.1038/s41586-019-1818-7
  3. Blanco JJ, Rodriguez-Pacheco J, Hidalgo MA, Sequeiros J, Monitoring the heliospheric current sheet local structure for the years 1995 to 2001, J. Atmos. Sol. Terres. Phys. 70, 226-233 (2008). https://doi.org/10.1016/j.jastp.2007.08.030
  4. Boardsen SA, Jian LK, Raines JL, Gershman DJ, Zurbuchen TH, et al., MESSENGER survey of in situ low frequency wave storms between 0.3 and 0.7 AU, J. Geophys. Res. 120, 10207-10220 (2015). https://doi.org/10.1002/2015JA021506
  5. Bowen TA, Chandran BDG, Squire J, Bale SD, Duan D, et al., In situ signature of cyclotron resonant heating in the solar wind, Phys. Rev. Lett. 129, 165101 (2022). https://doi.org/10.1103/PhysRevLett.129.165101
  6. Bowen TA, Mallet A, Huang J, Klein KG, Malaspina DM, et al., Ion-scale electromagnetic waves in the inner heliosphere, Astrophys. J. Suppl. Ser. 246, 66 (2020). https://doi.org/10.3847/1538-4365/ab6c65
  7. Breneman A, Cattell C, Schreiner S, Kersten K, Wilson LB 3rd, et al., Observations of large-amplitude, narrowband whistlers at stream interaction regions, J. Geophys. Res. Space Phys. 115, A08104 (2010). https://doi.org/10.1029/2009JA014920
  8. Burlaga L, Voyager observations of the magnetic field in the heliosheath and the local interstellar medium, J. Phys. Conf. Ser. 642, 012003 (2015). https://doi.org/10.1088/1742-6596/642/1/012003
  9. Burlaga LF, Ness NF, Richardson JD, Heliosheath magnetic field and plasma observed by Voyager 2 during 2015 near solar maximum, Astrophys. J. 861, 9 (2018). https://doi.org/10.3847/1538-4357/aac6b8
  10. Cattell C, Vo T, Modeling interactions of narrowband large amplitude whistler-mode waves with electrons in the solar wind inside ~0.3 AU and at 1 AU using a particle tracing code, Astrophys. J. Lett. 914, L33 (2021). https://doi.org/10.3847/2041-8213/ac08a1
  11. Cattell CA, Short B, Breneman AW, Grul P, Narrowband large amplitude whistler-mode waves in the solar wind and their association with electrons: STEREO waveform capture observations, Astrophys. J. 897, 126 (2020). https://doi.org/10.3847/1538-4357/ab961f
  12. Chen Y, Hu Q, Effects of radial distances on small-scale magnetic flux ropes in the solar wind, Astrophys. J. 894, 25 (2020). https://doi.org/10.3847/1538-4357/ab8294
  13. Chen Y, Hu Q, Allen RC, Jian LK, Small-scale magnetic flux ropes in stream interaction regions from Parker Solar Probe and Wind spacecraft observations, Astrophys. J. 943, 33 (2023). https://doi.org/10.3847/1538-4357/aca894
  14. Cho KS, Hwang J, Han JY, Choi SH, Park SH, et al., Opening new horizons with the L4 mission: vision and plan, J. Korean Astron. Soc. 56, 263-275 (2023). https://doi.org/10.5303/JKAS.2023.56.2.263
  15. Choi D, Lee DY, Choi KE, Noh SJ, SH43D-3178 Determination of current sheet structure in the inner heliosheath using Voyager observations, AGU Annual Meeting 2023, San Francisco, CA, 11-15 Dec 2023.
  16. Choi KE, Lee DY, Marubashi K, Lee S, Near-orthogonal orientation of small-scale magnetic flux ropes relative to the background interplanetary magnetic field, Astrophys. J. 931, 98 (2022). https://doi.org/10.3847/1538-4357/ac69d3
  17. Choi KE, Lee DY, Noh SJ, Agapitov O, Series of small-scale low plasma β magnetic flux ropes originating from the same longitudinal region: parker solar probe observations, Astrophys. J. 961, 3 (2024). https://doi.org/10.3847/1538-4357/ad02f6
  18. Choi KE, Lee DY, Wang HE, Lee S, Kim KC, et al., Characteristics of suprathermal electrons in small-scale magnetic flux ropes and their implications on the magnetic connection to the sun, Sol. Phys. 296, 148 (2021). https://doi.org/10.1007/s11207-021-01888-0
  19. Cucinotta FA, Hu S, Schwadron NA, Kozarev K, Townsend LW, et al., Space radiation risk limits and Earth-Moon-Mars environmental models, Space Weather. 8, S00E09 (2010). https://doi.org/10.1029/2010SW000572
  20. Desai M, Giacalone J, Large gradual solar energetic particle events, Living Rev. Sol. Phys. 13, 3 (2016). https://doi.org/10.1007/s41116-016-0002-5
  21. Dialynas K, Krimigis SM, Mitchell DG, Roelof EC, Decker RB, A three-coordinate system (ecliptic, galactic, ISMF) spectral analysis of heliospheric ENA emissions using Cassini/INCA measurements, Astrophys. J. 778, 40 (2013). https://doi.org/10.1088/0004-637X/778/1/40
  22. Drake JF, Agapitov O, Swisdak M, Badman ST, Bale SD, et al., Switchbacks as signatures of magnetic flux ropes generated by interchange reconnection in the corona, Astron. Astrophys. 650, A2 (2021). https://doi.org/10.1051/0004-6361/202039432
  23. Foullon C, Lavraud B, Wardle NC, Owen CJ, Kucharek H, et al., The apparent layered structure of the heliospheric current sheet: multi-spacecraft observations, Sol. Phys. 259, 389-416 (2009). https://doi.org/10.1007/s11207-009-9452-4
  24. Funsten HO, Allegrini F, Crew GB, DeMajistre R, Frisch PC, et al., Structures and spectral variations of the outer heliosphere in IBEX energetic neutral atom maps, Science. 326, 964-966 (2009). https://doi.org/10.1126/science.1180927
  25. Gary SP, Jian LK, Broiles TW, Stevens ML, Podesta JJ, et al., Iondriven instabilities in the solar wind: WIND observations of 19 March 2015, J. Geophys. Res. Space Phys. 121, 30-41 (2016). https://doi.org/10.1002/2015JA021935
  26. Ginzburg VL, Zhelezniakov VV, On the possible mechanisms of sporadic solar radio emission (radiation in an isotropic plasma), Soviet Astron. 2, 653 (1958).
  27. Gopalswamy N, Properties of interplanetary coronal mass ejections, Space Sci. Rev. 124, 145-168 (2006). https://doi.org/10.1007/s11214-006-9102-1
  28. Gruntman M, Roelof EC, Mitchell DG, Fahr HJ, Funsten HO, et al., Energetic neutral atom imaging of the heliospheric boundary region, J. Geophys. Res. Space Phys. 106, 15767-15781 (2001). https://doi.org/10.1029/2000JA000328
  29. Hoeksema JT, Wilcox JM, Scherrer PH, The structure of the heliospheric current sheet: 1978-1982, J. Geophys. Res. 88, 9910-9918 (1983). https://doi.org/10.1029/JA088iA12p09910
  30. Horbury TS, Matteini L, Stansby D, Short, large-amplitude speed enhancements in the near-Sunfast solar wind, Mon. Not. R. Astron. Soc. 478, 1980-1986 (2018). https://doi.org/10.1093/mnras/sty953
  31. Hughes HL, Benedetto JM, Radiation effects and hardening of MOS technology: devices and circuits, IEEE Trans. Nuclear Sci. 50, 500-521 (2003). https://doi.org/10.1109/TNS.2003.812928
  32. Hwang J, Dokgo K, Choi E, Park JS, Kim KC, et al., Modeling of space radiation exposure estimation program for pilots, crew and passengers on commercial flights, J. Astron. Space Sci. 31, 25-31 (2014). https://doi.org/10.5140/JASS.2014.31.1.25
  33. Hwang JA, Lee JJ, Cho KS, Choi HS, Rho SR, et al., Space radiation measurement on the polar route onboard the Korean commercial flights, J. Astron. Space Sci. 27, 43-54 (2010). https://doi.org/10.5140/JASS.2010.27.1.043
  34. Jagarlamudi VK, Dudok de Wit T, Froment C, Krasnoselskikh V, Larosa A, et al., Whistler wave occurrence and the interaction with strahl electrons during the first encounter of Parker Solar Probe, Astron. Astrophys. 650, A9 (2021). https://doi.org/10.1051/0004-6361/202039808
  35. Jagarlamudi VK, Raouafi NE, Bourouaine S, Mostafavi P, Larosa A, et al., Occurrence and evolution of switchbacks in the inner heliosphere: Parker Solar Probe observations, Astrophys. J. Lett. 950, L7 (2023). https://doi.org/10.3847/2041-8213/acd778
  36. Jian LK, Russell CT, Luhmann JG, Strangeway RJ, Leisner JS, et al., Ion cyclotron waves in the solar wind observed by STEREO near 1 AU. Astrophys. J. 701, L105-L109 (2009). https://doi.org/10.1088/0004-637X/701/2/L105
  37. Jokipii JR, Thomas B, Effects of drift on the transport of cosmic rays. IV. Modulation by a wavy interplanetary current sheet. Astrophys. J. 243, 1115 (1981). https://doi.org/10.1086/158675
  38. Kim KH, Moon YJ, Cho KS, Prediction of the 1-AU arrival times of CME-associated interplanetary shocks: evaluation of an empirical interplanetary shock propagation model, J. Geophys. Res. 112, A05104 (2007). https://doi.org/10.1029/2006JA011904
  39. Kim RS, Cho KS, Lee J, Bong SC, Park YD, A refined classification of SPEs based on the multienergy channel observations, J. Geophys. Res. Space Phys. 119, 9419-9429 (2014). https://doi.org/10.1002/2014JA020358
  40. Kim RS, Gopalswamy N, Cho KS, Moon YJ, Yashiro S, Propagation characteristics of CMEs associated with magnetic clouds and ejecta, Sol. Phys. 284, 77-88 (2013). https://doi.org/10.1007/s11207-013-0230-y
  41. Krimigis SM, Mitchell DG, Roelof EC, Hsieh KC, McComas DJ, Imaging the interaction of the heliosphere with the interstellar medium from Saturn with Cassini, Science. 326, 971-973 (2009). https://doi.org/10.1126/science.1181079
  42. Lacombe C, Alexandrova O, Matteini L, Santolik O, Cornilleau-Wehrlin N, et al., Whistler mode waves and the electron heat flux in the solar wind: cluster observations, Astrophys. J. 796, 5 (2014). https://doi.org/10.1088/0004-637X/796/1/5
  43. Lavraud B, Fargette N, Reville V, Szabo A, Huang J, et al., The heliospheric current sheet and plasma sheet during Parker Solar Probe's first orbit, Astrophys. J. Lett. 894, L19 (2020). https://doi.org/10.3847/2041-8213/ab8d2d
  44. Lee MA, Fahr HJ, Kucharek H, Moebius E, Prested C, et al., Physical processes in the outer heliosphere, Space Sci. Rev. 146, 275-294 (2009). https://doi.org/10.1007/s11214-009-9522-9
  45. Lee SY, Yoon PH, Lee E, Tu W, Simulation of plasma emission in magnetized plasmas, Astrophys. J. 924, 36 (2022). https://doi.org /10.3847/1538-4357/ac32bb
  46. Lee SY, Ziebell LF, Yoon PH, Gaelzer R, Lee ES, Particle-in-cell and weak turbulence simulations of plasma emission, Astrophys. J. 871, 74 (2019). https://doi.org/10.3847/1538-4357/aaf476
  47. Lepping RP, Szabo A, Peredo M, Hoeksema JT, Large-scale properties and solar connection of the heliospheric current and plasma sheets: WIND observations, Geophys. Res. Lett. 23, 1199-1202 (1996). https://doi.org/10.1029/96GL00658
  48. Liou K, Wu CC, Characteristics of the heliospheric current sheets at the sector boundaries: wind observations from 1995-2020, Astrophys. J. 920, 39 (2021). https://doi.org/10.3847/1538-4357/ac1586
  49. Liu W, Zhao J, Wang T, Dong X, Kasper JC, et al., The radial distribution of ion-scale waves in the inner heliosphere, Astrophys. J. 951, 69 (2023). https://doi.org/10.3847/1538-4357/acd53b
  50. MacLean DJ, Labrum NR, Solar Radiophysics (Cambridge University Press, Cambridge, 1985).
  51. McComas DJ, Allegrini F, Bochsler P, Bzowski M, Christian ER, et al., Global observations of the interstellar interaction from the Interstellar Boundary Explorer (IBEX), Science. 326, 959-962 (2009). https://doi.org/10.1126/science.1180906
  52. Melrose DB, Coherent emission mechanisms in astrophysical plasmas, Rev. Mod. Plasma Phys. 1, 5 (2017). https://doi.org/10.1007/s41614-017-0007-0
  53. Melrose DB, Plasma Astrophysics, Vol. I & II (Gordon and Breach Science Publishers, New York, 1980).
  54. Miller JA, Guessoum N, Ramaty R, Stochastic fermi acceleration in solar flares, Astrophys. J. 361, 701 (1990). https://doi.org/10.1086/169233
  55. Moldwin MB, Phillips JL, Gosling JT, Scime EE, McComas DJ, et al., Ulysses observation of a noncoronal mass ejection flux rope: evidence of interplanetary magnetic reconnection, J. Gesophys. Res. Space Phys. 100, 19903-19910 (1995). https://doi.org/10.1029/95JA01123
  56. Morosan DE, Zucca P, Bloomfield DS, Gallagher PT, Conditions for electron-cyclotron maser emission in the solar corona, Astron. Astrophys. 589, L8 (2016). https:// doi.org/10.1051/0004-6361/201628392
  57. Neugebauer M, Heliospheric sector boundaries: single or multiple? J. Gesophys. Res. Space Phys. 113, A12106 (2008). https://doi.org/10.1029/2008JA013453
  58. Odstrcil D, Modeling 3-D solar wind structure, Adv. Space Res. 32, 497-506 (2003). https://doi.org/10.1016/S0273-1177(03)00332-6
  59. Owens MJ, Forsyth RJ, The heliospheric magnetic field, Living Rev. Sol. Phys. 10, 5 (2013). https://doi.org/10.12942/lrsp-2013-5
  60. Pagel C, Peter Gary S, de Koning CA, Skoug RM, Steinberg JT, Scattering of suprathermal electrons in the solar wind: ACE observations, J. Gesophys. Res. Space Phys. 112, A04103 (2007). https://doi.org/10.1029/2006JA011967
  61. Palmerio E, Lee CO, Leila Mays M, Luhmann JG, Lario D, et al., CMEs and SEPs during November-December 2020: a challenge for real-time space weather forecasting, Space Weather. 20, e2021SW002993 (2022). https://doi.org/10.1029/2021SW002993
  62. Pomoell J, Poedts S, EUHFORIA: European heliospheric forecasting information asset, J. Space Weather Space Clim. 8, A35 (2018). https://doi.org/10.1051/swsc/2018020
  63. Porowski C, Bzowski M, Tokumaru M, A new 3D solar wind speed and density model based on interplanetary scintillation, Astrophys. J. 259, 2 (2022). https://doi.org/10.3847/1538-4365/ac35d7
  64. Posner A, Arge CN, Staub J, StCyr OC, Folta D, et al., A multipurpose heliophysics L4 mission, Space Weather. 19, 1-27 (2021). https://doi.org/10.1029/2021SW002777
  65. Raouafi NE, Matteini L, Squire J, Badman ST, Velli M, et al., Parker Solar Probe: four years of discoveries at solar cycle minimum, Space Sci. Rev. 219, 8 (2023). https://doi.org/10.1007/s11214-023-00952-4
  66. Reames DV, Four distinct pathways to the element abundances in solar energetic particles, Space Sci. Rev. 216, 20 (2020). https://doi.org/10.1007/s11214-020-0643-5
  67. Reames DV, Particle acceleration at the Sun and in the heliosphere, Space Sci. Rev. 90, 413-491 (1999). https://doi.org/10.1023/A:1005105831781
  68. Reames DV, Review and outlook of solar energetic particle measurements on multispacecraft missions, Front. Astron. Space Sci. 10, 1254266 (2023). https://doi.org/10.3389/fspas.2023.1254266
  69. Reames DV, The two sources of solar energetic particles, Space Sci. Rev. 175, 53-92 (2013). https://doi.org/10.1007/s11214-013-9958-9
  70. Reames DV, Kallenrode MB, Stone RG, Multispacecraft observations of solar 3He-rich events, Astrophys. J. 380, 287 (1991). https://doi.org/10.1086/170585
  71. Richardson IG, von Rosenvinge TT, Cane HV, Christian ER, Cohen CMS, et al., > 25 MeV proton events observed by the high energy telescopes on the STEREO A and B spacecraft and/or at Earth during the first ~ seven years of the STEREO mission, Sol. Phys. 289, 3059-3107 (2014). https://doi.org/10.1007/s11207-014-0524-8
  72. Rouillard AP, Sheeley NR Jr, Cooper TJ, Davies JA, Lavraud B, et al., The solar origin of small interplanetary transients, Astrophys. J. 734, 7 (2011). https://doi.org/10.1088/0004-637X/734/1/7
  73. Sanchez-Diaz E, Rouillard AP, Lavraud B, Kilpua E, Davies JA, In situ measurements of the variable slow solar wind near sector boundaries, Astrophys. J. 882, 51 (2019). https://doi.org/10.3847/1538-4357/ab341c
  74. Schulz M, Interplanetary sector structure and the heliomagnetic equator, Astrophys. Space Sci. 24, 371-383 (1973). https://doi.org/10.1007/BF02637162
  75. Schwadron NA, Allegrini F, Bzowski M, Christian ER, Crew GB, et al., Separation of the interstellar boundary explorer ribbon from globally distributed energetic neutral atom flux, Astrophys. J. 731, 56 (2011). https://doi.org/10.1088/0004-637X/731/1/56
  76. Scolini C, Chane E, Temmer M, Kilpua EKJ, Dissauer K, et al., CME-CME interactions as sources of CME geoeffectiveness: the formation of the complex ejecta and intense geomagnetic storm in 2017 early September, Astrophys. J. Suppl. Ser. 247, 21 (2020). https://doi.org/10.3847/1538-4365/ab6216
  77. Seough J, Yoon PH, Nariyuki Y, Salem C, Expanding-box quasilinear model of the solar wind, Astrophys. J. 953, 8 (2023). https://doi.org/10.3847/1538-4357/acde7d
  78. Sheeley NR Jr, Origin of the Wang-Sheeley-Arge solar wind model, Hist. Geo Space Sci. 8, 21-28 (2017). https://doi.org/10.5194/hgss-8-21-2017
  79. Sinclair D, Dyer J, Radiation effects and COTS parts in Smallsats, Proceedings of the 27th Annual AIAA/USU Conference on Small Satellites, Logan, UT, 10-15 Aug 2013.
  80. Smith EJ, The heliospheric current sheet, J. Geophys. Res. Space Phys. 106, 15819-15831 (2001). https://doi.org/10.1029/2000JA000120
  81. Sokol JM, Swaczyna P, Bzowski M, Tokumaru M, Reconstruction of helio-latitudinal structure of the solar wind proton speed and density, Sol. Phys. 290, 2589-2615 (2015). https://doi.org/10.1007/s11207-015-0800-2
  82. Squire J, Meyrand R, Kunz MW, Arzamasskiy L, Schekochihin AA, et al., High-frequency heating of the solar wind triggered by low-frequency, Nat. Astron. 6, 715-723 (2022). https://doi.org/10.1038/s41550-022-01624-z
  83. Stansby D, Horbury TS, Chen CHK, Matteini L, Experimental determination of whistler wave dispersion relation in the solar wind, Astrophys. J. Lett. 829, L16 (2016). https://doi.org/10.3847/2041-8205/829/1/L16
  84. Szabo A, Larson D, Whittlesey P, Stevens ML, Lavraud B, et al., The heliospheric current sheet in the inner heliosphere observed by the Parker Solar Probe, Astrophys. J. 246, 47 (2020). https://doi.org/10.3847/1538-4365/ab5dac
  85. Telloni D, Persistence of ion cyclotron waves and stochasticity of kinetic Alfven waves in the solar wind, Atmosphere. 12, 44 (2021). https://doi.org/10.3390/atmos12010044
  86. Telloni D, Bruno R, D'Amicis R, Pietropaolo E, Carbone V, Wavelet analysis as a tool to localize magnetic and cross-helicity events in the solar wind, Astrophys. J. 751, 19 (2012). https://doi.org/10.1088/0004-637X/751/1/19
  87. Tong Y, Vasko IY, Artemyev AV, Bale SD, Mozer FS, et al., Statistical study of whistler waves in the solar wind at 1 au, Astrophys. J. 878, 41 (2019). https://doi.org/10.3847/1538-4357/ab1f05
  88. Verniero JL, Larson DE, Livi R, Rahmati A, McManus MD, et al., Parker Solar Probe observations of proton beams simultaneous with ion-scale waves, Astrophys. J. Suppl. Ser. 248, 5 (2020). https://doi.org/10.3847/1538-4365/ab86af
  89. Verscharen D, Klein KG, Maruca BA, The multi-scale nature of the solar wind, Living Rev. Sol. Phys. 16, 5 (2019). https://doi.org/10.1007/s41116-019-0021-0
  90. Viall NM, DeForest CE, Kepko L, Mesoscale structure in the solar wind, Front. Astron. Space Sci. 8, 735034 (2021). https://doi.org/10.3389/fspas.2021.735034
  91. Vrsnak B, Forces governing coronal mass ejections, Adv. Space Res. 38, 431-440 (2006). https://doi.org/10.1016/j.asr.2005.03.090
  92. Vrsnak B, Gopalswamy N, Influence of the aerodynamic drag on the motion of interplanetary ejecta, J. Geophys. Res. Space Phys. 107, SSH 2-1-SSH 2-6 (2002). https://doi.org/10.1029/2001JA000120
  93. Wei HY, Jian LK, Russell CT, Omidi N, Ion cyclotron waves in the solar wind, in Low-Frequency Waves in Space Plasmas, eds. Keiling A, Lee DH, Nakariakov V (John Wiley & Sons, Hoboken, 2016), 253-267.
  94. White SM, Solar radio bursts and space weather, Asian J. Phys. 16, 189-207 (2007).
  95. Whitman K, Egeland R, Richardson IG, Allison C, Quinn P, et al., Review of solar energetic particle prediction models, Adv. Space Res. 72, 5161-5242 (2023). https://doi.org/10.1016/j.asr.2022.08.006
  96. Wiedenbeck ME, Mason GM, Cohen CMS, Nitta NV, Gomez-Herrero R, et al., Observations of solar energetic particles from 3He-rich events over a wide range of heliographic longitude, Astrophys. J. 762, 54 (2013). https://doi.org/10.1088/0004-637X/762/1/54
  97. Wiedenbeck ME, Mason GM, Gomez-Herrero R, Haggerty D, Nitta NV, et al., Observations of a 3He-rich SEP event over a broad range of heliographic longitudes: results from STEREO and ACE, AIP Conf. Proc. 1216, 621-624 (2010). https://doi.org/10.1063/1.3395943
  98. Wijsen N, Aran A, Pomoell J, Poedts S, Modelling threedimensional transport of solar energetic protons in a corotating interaction region generated with EUHFORIA, Astron. Astrophys. 622, A28 (2019). https://doi.org/10.1051/0004-6361/201833958
  99. Wilcox Solar Observatory, Wilcox solar observatory source surface synoptic charts (2023) [Internet], viewed 2024 Mar 4, available from: http://wso.stanford.edu
  100. Winterhalter D, Smith EJ, Burton ME, Murphy N, McComas DJ. The heliospheric plasma sheet, J. Geophys. Res. Space Phys. 99, 6667-6680 (1994). https://doi.org/10.1029/93JA03481
  101. Yoo JH, Lee DY, Kwon RY, SH51D-2649 Modeling energetic neutral atom responses in the inner heliosheath to fast solar wind variations, Proceedings of the AGU Annual Meeting 2023, San Francisco, CA, 11-15 Dec 2023.
  102. Zank GP, Rice WKM, Wu CC, Particle acceleration and coronal mass ejection driven shocks: a theoretical model, J. Geosphys. Res. Space Phys. 105, 25079-25095 (2000). https://doi.org/10.1029/1999JA000455
  103. Zhao GQ, Feng HQ, Wu DJ, Pi G, Huang J, et al., On the generation mechanism of electromagnetic cyclotron waves in the solar wind: statistical results from WIND observations, Astrophys. J. 871, 175 (2019). https://doi.org/10.3847/1538-4357/aaf8b8
  104. Zhao LL, Zank GP, Adhikari L, Hu Q, Kasper JC, et al., Identification of magnetic flux ropes from Parker Solar Probe observations during the first encounter, Astrophys. J. Suppl. Ser. 246, 26 (2020). https://doi.org/10.3847/1538-4365/ab4ff1
  105. Zheng J, Hu Q, Observational evidence for self-generation of small-scale magnetic flux ropes from intermittent solar wind turbulence, Astrophys. J. Lett. 852, L23 (2018). https://doi.org/10.3847/2041-8213/aaa3d7
  106. Zheng J, Hu Q, Chen Y, le Roux J, Automated detection of smallscale magnetic flux ropes and their association with shocks, J. Phys. Conf. Ser. 900, 012024 (2017). https://doi.org/10.1088/1742-6596/900/1/012024