• Title/Summary/Keyword: Prediction modeling

Search Result 1,879, Processing Time 0.034 seconds

Neuro-Fuzzy Approaches to Ozone Prediction System (뉴로-퍼지 기법에 의한 오존농도 예측모델)

  • 김태헌;김성신;김인택;이종범;김신도;김용국
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.6
    • /
    • pp.616-628
    • /
    • 2000
  • In this paper, we present the modeling of the ozone prediction system using Neuro-Fuzzy approaches. The mechanism of ozone concentration is highly complex, nonlinear, and nonstationary, the modeling of ozone prediction system has many problems and the results of prediction is not a good performance so far. The Dynamic Polynomial Neural Network(DPNN) which employs a typical algorithm of GMDH(Group Method of Data Handling) is a useful method for data analysis, identification of nonlinear complex system, and prediction of a dynamical system. The structure of the final model is compact and the computation speed to produce an output is faster than other modeling methods. In addition to DPNN, this paper also includes a Fuzzy Logic Method for modeling of ozone prediction system. The results of each modeling method and the performance of ozone prediction are presented. The proposed method shows that the prediction to the ozone concentration based upon Neuro-Fuzzy approaches gives us a good performance for ozone prediction in high and low ozone concentration with the ability of superior data approximation and self organization.

  • PDF

Prediction of Transmembrane Protein Topology Using Position-specific Modeling of Context-dependent Structural Regions

  • Chi, Sang-Mun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.3
    • /
    • pp.683-693
    • /
    • 2005
  • This paper presents a new transmembrane Protein topology prediction method which is an attempt to model the topological rules governing the topogenesis of transmembrane proteins. Context-dependent structural regions of the transmembrane protein are used as basic modeling units in order to effectively represent their topogenic roles during transmembrane protein assembly. These modeling units are modeled by means of a tied-state hidden Markov model, which can express the position-specific effect of amino acids during ransmembrane protein assembly. The performance of prediction improves with these modeling approaches. In particular, marked improvement of orientation prediction shows the validity of the proposed modeling. The proposed method is available at http://bioroutine.com/TRAPTOP.

  • PDF

A methodology for creating a function-centered reliability prediction model (기능 중심의 신뢰성 예측 모델링 방법론)

  • Chung, Yong-ho;Park, Ji-Myoung;Jang, Joong-Soon;Park, Sang-Chul
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.4
    • /
    • pp.77-84
    • /
    • 2016
  • This paper proposes a methodology for creating a function based reliability prediction model. Although, there are various works for reliability prediction, one of the features of their research is that the research is based on hardware-centered reliability prediction. Reliability is often defined as the probability that a device will perform its intended function, under operating condition, for a specified period of time, there is a profound irony about reliability prediction problem. In this paper, we proposed four-phase modeling procedure for function-centered reliability prediction. The proposed modeling procedure consists of four models; 1) structure block model, 2) function block model, 3) device model, and 4) reliability prediction model. We performed function-centered reliability prediction for electronic ballast using the proposed modeling procedure and MIL-HDBK-217F which is the military handbook for reliability prediction of electronic equipment.

Role of Supercomputers in Numerical Prediction of Weather and Climate (기상 및 기후의 수치예측에 대한 슈퍼컴퓨터의 역할)

  • Park, Seon-Ki
    • Atmosphere
    • /
    • v.14 no.4
    • /
    • pp.19-23
    • /
    • 2004
  • Progresses in numerical prediction of weather and climate have been in parallel with those of computing resources, especially the development of supercomputers. Advanced techniques in numerical modeling, computational schemes, and data assimilation cloud not have been practically achieved without the aid of supercomputers. With such techniques and computing powers, the accuracy of numerical forecasts has been tremendously improved. Supercomputers are also indispensible in constructing and executing the synthetic Earth system models. In this study, a brief overview on numerical weather / climate prediction, Earth system modeling, and the values of supercomputing is provided.

Prediction Method for Depth Picture through Spherical Modeling Mode (구면 모델링 모드를 통한 깊이 화면 예측 방법)

  • Lee, Dong-Seok;Kwon, Soon-Kak
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.12
    • /
    • pp.1368-1375
    • /
    • 2019
  • In this paper, an prediction method is proposed for coding of depth pictures using spherical modeling. An spherical surface which has the least error from original depth values is modeled in a block. Pixels in the block are predicted through the parameters of the modeled spherical surface. Simulation results show that average prediction errors and entropy powers are improved to 30% and 200% comparing to the intra prediction of H.264/AVC, selection ratios of the proposed spherical modeling mode is more than 25%.

A Study on Comparison of Highway Traffic Noise Prediction Models using in Korea (국내 고속도로 교통소음 예측모델에 대한 비교 연구)

  • Kim, Chul-Hwan;Chang, Tae-Sun;Lee, Ki-Jung;Kang, Hee-Man
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.101-104
    • /
    • 2007
  • All of noise prediction model have it's own features in the case of modeling conditions, so it is very important to know the features of each model case by case for a proper modeling, especially using at the Environmental Impact Assessment. For prediction of highway traffic noise and abating the noise by barriers, two kinds of prediction model, HW-NOISE, KHTN(Korea Highway Traffic Noise) has been mainly used in Korea. In this study, the features of these models were described at the same conditions. The properties of sound power from a road, diffraction characteristics from a barrier, sound pressure level decaying in each model were investigated. Using the results, it will be anticipated that the proper using of prediction models in the works of highway noise abating.

  • PDF

A Survey of Applications of Artificial Intelligence Algorithms in Eco-environmental Modelling

  • Kim, Kang-Suk;Park, Joon-Hong
    • Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.102-110
    • /
    • 2009
  • Application of artificial intelligence (AI) approaches in eco-environmental modeling has gradually increased for the last decade. Comprehensive understanding and evaluation on the applicability of this approach to eco-environmental modeling are needed. In this study, we reviewed the previous studies that used AI-techniques in eco-environmental modeling. Decision Tree (DT) and Artificial Neural Network (ANN) were found to be major AI algorithms preferred by researchers in ecological and environmental modeling areas. When the effect of the size of training data on model prediction accuracy was explored using the data from the previous studies, the prediction accuracy and the size of training data showed nonlinear correlation, which was best-described by hyperbolic saturation function among the tested nonlinear functions including power and logarithmic functions. The hyperbolic saturation equations were proposed to be used as a guideline for optimizing the size of training data set, which is critically important in designing the field experiments required for training AI-based eco-environmental modeling.

Study on Wind Power Prediction model based on Spatial Modeling (공간모델링 기반의 풍력발전출력 예측 모델에 관한 연구)

  • Jung, Solyoung;Hur, Jin;Choy, Young-do
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.163-168
    • /
    • 2015
  • In order to integrate high wind generation resources into power grid, it is an essential to predict power outputs of wind generating resources. As wind farm outputs depend on natural wind resources that vary over space and time, spatial modeling based on geographic information such as latitude and longitude is needed to estimate power outputs of wind generation resources. In this paper, we introduce the basic concept of spatial modeling and present the spatial prediction model based on Kriging techniques. The empirical data, wind farm power output in Texas, is considered to verify the proposed prediction model.

A comparative assessment of bagging ensemble models for modeling concrete slump flow

  • Aydogmus, Hacer Yumurtaci;Erdal, Halil Ibrahim;Karakurt, Onur;Namli, Ersin;Turkan, Yusuf S.;Erdal, Hamit
    • Computers and Concrete
    • /
    • v.16 no.5
    • /
    • pp.741-757
    • /
    • 2015
  • In the last decade, several modeling approaches have been proposed and applied to estimate the high-performance concrete (HPC) slump flow. While HPC is a highly complex material, modeling its behavior is a very difficult issue. Thus, the selection and application of proper modeling methods remain therefore a crucial task. Like many other applications, HPC slump flow prediction suffers from noise which negatively affects the prediction accuracy and increases the variance. In the recent years, ensemble learning methods have introduced to optimize the prediction accuracy and reduce the prediction error. This study investigates the potential usage of bagging (Bag), which is among the most popular ensemble learning methods, in building ensemble models. Four well-known artificial intelligence models (i.e., classification and regression trees CART, support vector machines SVM, multilayer perceptron MLP and radial basis function neural networks RBF) are deployed as base learner. As a result of this study, bagging ensemble models (i.e., Bag-SVM, Bag-RT, Bag-MLP and Bag-RBF) are found superior to their base learners (i.e., SVM, CART, MLP and RBF) and bagging could noticeable optimize prediction accuracy and reduce the prediction error of proposed predictive models.

A Methodology for Performance Modeling and Prediction of Large-Scale Cluster Servers (대규모 클러스터 서버의 성능 모델링 및 예측 방법론)

  • Jang, Hye-Churn;Jin, Hyun-Wook;Kim, Hag-Young
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.11
    • /
    • pp.1041-1045
    • /
    • 2010
  • Clusters can provide scalable and flexible architectures for parallel computing servers and data centers. Their performance prediction has been a very challenging issue. Existing performance measurement methodologies are able to measure the performance of servers already constructed. Thus they cannot provide a way to predict the overall system performance in advance when designing the system at the initial phase or adding more nodes for more capacity. Therefore, the performance modeling and prediction methodology for large-scale clusters is highly required. In this paper, we suggest a methodology to predict the performance of large-scale clusters, which consists of measurement, modeling and prediction steps. We apply the methodology to a real cluster server and show its usefulness.