• Title/Summary/Keyword: Prediction map

Search Result 571, Processing Time 0.025 seconds

Prediction of Microstructure evolutions during hot-working of AZ31 Mg alloy using Processing map (Processing map을 이용한 AZ31 Mg합금의 미세조직예측)

  • Lee, Byoung-Ho;Lee, Chong-Soo
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.31-34
    • /
    • 2007
  • In this study, optimum processing condition of AZ31 Mg alloy was investigated utilizing processing map and constitutive equation considering microstructure evolution (dynamic recrystallization) during hot-working. A series of mechanical tests were conducted at various temperatures and strain rates to construct a processing map and to formulate the recrystallization kinetics and grain size relation. Dynamic recrystallization (DRX) was observed to occur revealing maximum intensity at a domain of $250^{\circ}C$ and 1/s. The effect of DRX kinetics on microstructure evolution was implemented in a commercial FEM code followed by remapping of the state variables. The volume fraction and grain size of deformed part were predicted using a modified FEM code and compared with those of actual hot forged one. A good agreement was observed between the experimental results and predicted ones.

  • PDF

Depth Map Extraction from the Single Image Using Pix2Pix Model (Pix2Pix 모델을 활용한 단일 영상의 깊이맵 추출)

  • Gang, Su Myung;Lee, Joon Jae
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.5
    • /
    • pp.547-557
    • /
    • 2019
  • To extract the depth map from a single image, a number of CNN-based deep learning methods have been performed in recent research. In this study, the GAN structure of Pix2Pix is maintained. this model allows to converge well, because it has the structure of the generator and the discriminator. But the convolution in this model takes a long time to compute. So we change the convolution form in the generator to a depthwise convolution to improve the speed while preserving the result. Thus, the seven down-sizing convolutional hidden layers in the generator U-Net are changed to depthwise convolution. This type of convolution decreases the number of parameters, and also speeds up computation time. The proposed model shows similar depth map prediction results as in the case of the existing structure, and the computation time in case of a inference is decreased by 64%.

Probabilistic Prediction of the Risk of Sexual Crimes Using Weight of Evidence (Weight of Evidence를 활용한 성폭력 범죄 위험의 확률적 예측)

  • KIM, Bo-Eun;KIM, Young-Hoon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.4
    • /
    • pp.72-85
    • /
    • 2019
  • The goal of this study is to predict sexual violence crimes, which is an routine risk. The study used to the Weight of Evidence on sexual violence crimes that occurred in partly Cheongju-si for five years from 2011 to 2015. The results are as follows. First, application and analysis of the Weight of Evidence that considers the weight of evidence characteristics showed 8 out of total 26 evidences that are used for a sexual violence crimes risk prediction. The evidences were residential area, date of use permission for building, individual housing price, floor area ratio, number of basement floor, lot area, security light and recreational facility; which satisfied credibility in the process of calculating weight. Second, The weight calculated 8 evidences were combined to create the prediction map in the end. The map showed that 16.5% of sexual violence crimes probability occurs in 0.3㎢, which is 3.3% of the map. The area of probability of 34.5% is 1.8㎢, which is 19.0% of the map and the area of probability of 75.5% is 2.0㎢, which is 20.7% of the map. This study derived the probability of occurrence of sexual violence crime risk and environmental factors or conditions that could reduce it. Such results could be used as basic data for devising preemptive measures to minimize sexual violence, such as police activities to prevent crimes.

Optimization of Soil Contamination Distribution Prediction Error using Geostatistical Technique and Interpretation of Contributory Factor Based on Machine Learning Algorithm (지구통계 기법을 이용한 토양오염 분포 예측 오차 최적화 및 머신러닝 알고리즘 기반의 영향인자 해석)

  • Hosang Han;Jangwon Suh;Yosoon Choi
    • Economic and Environmental Geology
    • /
    • v.56 no.3
    • /
    • pp.331-341
    • /
    • 2023
  • When creating a soil contamination map using geostatistical techniques, there are various sources that can affect prediction errors. In this study, a grid-based soil contamination map was created from the sampling data of heavy metal concentrations in soil in abandoned mine areas using Ordinary Kriging. Five factors that were judged to affect the prediction error of the soil contamination map were selected, and the variation of the root mean squared error (RMSE) between the predicted value and the actual value was analyzed based on the Leave-one-out technique. Then, using a machine learning algorithm, derived the top three factors affecting the RMSE. As a result, it was analyzed that Variogram Model, Minimum Neighbors, and Anisotropy factors have the largest impact on RMSE in the Standard interpolation. For the variogram models, the Spherical model showed the lowest RMSE, while the Minimum Neighbors had the lowest value at 3 and then increased as the value increased. In the case of Anisotropy, it was found to be more appropriate not to consider anisotropy. In this study, through the combined use of geostatistics and machine learning, it was possible to create a highly reliable soil contamination map at the local scale, and to identify which factors have a significant impact when interpolating a small amount of soil heavy metal data.

A Visualization Method for the Ocean Forecast Data using WMS System (WMS 시스템을 이용한 해양예측모델 데이터의 가시화 기법)

  • Kwon, Taejung;Lee, Jaeryoung;Park, Jaepyo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.6
    • /
    • pp.11-19
    • /
    • 2018
  • Recently, many companies offer various web-based map that is based on GIS(Geographic Information System) information. Google Map, Open street, Bing Map, Naver Map, Daum Map, Vwolrd Map, etc are the few examples of such system. In this paper, we propose a method to visualize ocean forecasting model data considering the flow diagram of tidal current, streamline expression algorithm, and user convenience by using vector field data information that is currently being served. It is confirmed that the proposed method of the flow diagram of tidal current, and stream line expression algorithm is faster than that of conventional ocean prediction model data by more than 2 times.

Application of Self-Organizing Map Theory for the Development of Rainfall-Runoff Prediction Model (강우-유출 예측모형 개발을 위한 자기조직화 이론의 적용)

  • Park, Sung Chun;Jin, Young Hoon;Kim, Yong Gu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4B
    • /
    • pp.389-398
    • /
    • 2006
  • The present study compositely applied the self-organizing map (SOM), which is a kind of artificial neural networks (ANNs), and the back propagation algorithm (BPA) for the rainfall-runoff prediction model taking account of the irregular variation of the spatiotemporal distribution of rainfall. To solve the problems from the previous studies on ANNs, such as the overestimation of low flow during the dry season, the underestimation of runoff during the flood season and the persistence phenomenon, in which the predicted values continuously represent the preceding runoffs, we introduced SOM theory for the preprocessing in the prediction model. The theory is known that it has the pattern classification ability. The method proposed in the present research initially includes the classification of the rainfall-runoff relationship using SOM and the construction of the respective models according to the classification by SOM. The individually constructed models used the data corresponding to the respectively classified patterns for the runoff prediction. Consequently, the method proposed in the present study resulted in the better prediction ability of runoff than that of the past research using the usual application of ANNs and, in addition, there were no such problems of the under/over-estimation of runoff and the persistence.

Overview of Inter-Component Coding in 3D-HEVC (3D-HEVC를 위한 인터-컴포넌트 부호화 방법)

  • Park, Min Woo;Lee, Jin Young;Kim, Chanyul
    • Journal of Broadcast Engineering
    • /
    • v.20 no.4
    • /
    • pp.545-556
    • /
    • 2015
  • A HEVC-compatible 3D video coding method (3D-HEVC) has been recently developed as an extension of the high efficiency video coding (HEVC) standard. In order to efficiently deal with the multi-view video plus depth (MVD) format, 3D-HEVC exploits an inter-component prediction which allows the prediction between texture and depth map images in addition to a temporal prediction used in the conventional single layer video coding such as H.264/AVC and HEVC. The performance of the inter-component prediction is normally affected by the accuracy of the disparity vector, and thus it is important to have an accurate disparity vector used for the inter-component prediction. This paper, therefore, introduces a disparity derivation method and inter-component algorithms using the disparity vector for the efficient 3D video coding. Simulation results show that the 3D-HEVC provides higher coding performance compared with the simulcast approach using HEVC and the simple multi-view extension (MH-HEVC).

Convolution Neural Network for Prediction of DNA Length and Number of Species (DNA 길이와 혼합 종 개수 예측을 위한 합성곱 신경망)

  • Sunghee Yang;Yeone Kim;Hyomin Lee
    • Korean Chemical Engineering Research
    • /
    • v.62 no.3
    • /
    • pp.274-280
    • /
    • 2024
  • Machine learning techniques utilizing neural networks have been employed in various fields such as disease gene discovery and diagnosis, drug development, and prediction of drug-induced liver injury. Disease features can be investigated by molecular information of DNA. In this study, we developed a neural network to predict the length of DNA and the number of DNA species in mixture solution which are representative molecular information of DNA. In order to address the time-consuming limitations of gel electrophoresis as conventional analysis, we analyzed the dynamic data of a microfluidic concentrating device. The dynamic data were reconstructed into a spatiotemporal map, which reduced the computational cost required for training and prediction. We employed a convolutional neural network to enhance the accuracy to analyze the spatiotemporal map. As a result, we successfully performed single DNA length prediction as single-variable regression, simultaneous prediction of multiple DNA lengths as multivariable regression, and prediction of the number of DNA species in mixture as binary classification. Additionally, based on the composition of training data, we proposed a solution to resolve the problem of prediction bias. By utilizing this study, it would be effectively performed that medical diagnosis using optical measurement such as liquid biopsy of cell-free DNA, cancer diagnosis, etc.

The Prediction of Hazard Area Using Raster Model (Raster 모델을 이용한 재해위험지 예측기법)

  • Kang, In-Joon;Choi, Chul-Ung;Cheong, Chang-Sik
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.2 no.2 s.4
    • /
    • pp.43-53
    • /
    • 1994
  • GSIS(geo-spatial information system), particularly when utilized in hazard management decision, is one of hazard analysis tool. Data of GSIS input from digitizing or scanning of map or aerial photos. This paper focuses upon the hazard prediction in GSIS and RS analysis to assess map, aerialphotos, satellite imagery and soil map. This study found computation of hazard area analysis. the results is formed as raster data model of quadtree. Authors knew more accurate results of overlay. This paper shows building up integrated data base as well as search of hazard area in aerial photographs.

  • PDF

An Acceleration Method of Face Detection using Forecast Map (예측맵을 이용한 얼굴탐색의 가속화기법)

  • 조경식;구자영
    • Journal of the Korea Society of Computer and Information
    • /
    • v.8 no.2
    • /
    • pp.31-36
    • /
    • 2003
  • This paper proposes an acceleration method of PCA(Principal Component Analysis) based feature detection. The feature detection method makes decision whether the target feature is included in a given image, and if included, calculates the position and extent of the target feature. The position and scale of the target feature or face is not known previously, all the possible locations should be tested for various scales to detect the target. This is a search Problem in huge search space. This Paper proposes a fast face and feature detection method by reducing the search space using the multi-stage prediction map and contour Prediction map. A Proposed method compared to the existing whole search way, and it was able to reduce a computational complexity below 10% by experiment.

  • PDF