In this study, optimum processing condition of AZ31 Mg alloy was investigated utilizing processing map and constitutive equation considering microstructure evolution (dynamic recrystallization) during hot-working. A series of mechanical tests were conducted at various temperatures and strain rates to construct a processing map and to formulate the recrystallization kinetics and grain size relation. Dynamic recrystallization (DRX) was observed to occur revealing maximum intensity at a domain of $250^{\circ}C$ and 1/s. The effect of DRX kinetics on microstructure evolution was implemented in a commercial FEM code followed by remapping of the state variables. The volume fraction and grain size of deformed part were predicted using a modified FEM code and compared with those of actual hot forged one. A good agreement was observed between the experimental results and predicted ones.
To extract the depth map from a single image, a number of CNN-based deep learning methods have been performed in recent research. In this study, the GAN structure of Pix2Pix is maintained. this model allows to converge well, because it has the structure of the generator and the discriminator. But the convolution in this model takes a long time to compute. So we change the convolution form in the generator to a depthwise convolution to improve the speed while preserving the result. Thus, the seven down-sizing convolutional hidden layers in the generator U-Net are changed to depthwise convolution. This type of convolution decreases the number of parameters, and also speeds up computation time. The proposed model shows similar depth map prediction results as in the case of the existing structure, and the computation time in case of a inference is decreased by 64%.
본 연구는 일상생활 가운데 누구나 겪을 수 있는 성폭력 범죄 위험의 예측을 목적으로 한다. 2011-2015년 5년 간 청주시 일부 지역에서 발생한 성폭력 범죄를 대상으로 베이지안 통계 기반의 Weight of Evidence를 적용·분석하였다. Weight of Evidence를 활용하여 분석한 결과 첫째, 투입된 관련요인(Evidence) 총 26개 중 주거용도면적, 건축물 사용승인일, 개별주택가격, 용적률, 지하층 수, 대지면적, 보안등, 오락시설 8개만이 신뢰도를 만족하여 각각의 가중치(Weight)가 산출되었다. 둘째, 가중치가 산출된 8개의 관련요인을 결합하여 최종적으로 예측 지도를 도출하였다. 성폭력 범죄가 발생할 위험이 75.5%인 지역은 대상지역 전체면적의 20.7%(2.0㎢)를 차지하였으며 16.5% 지역은 3.3%(0.3㎢), 34.5% 지역은 19.0%(1.8㎢)로 나타났다. 본 연구는 성폭력 범죄 위험의 발생 확률과 이를 감소시킬 수 있는 환경적 요인 또는 조건을 도출하였다. 이와 같은 결과는 경찰의 범죄예방 활동 등 성폭력 범죄 피해 최소화를 위한 선제적 대응방안 마련의 기초자료로서 활용될 수 있을 것이다.
지구통계 기법을 기반으로 토양오염지도를 작성하는 경우 예측 오차가 발생하며 이에 영향을 미치는 다양한 원인이 존재한다. 본 연구에서는 정규 크리깅을 활용하여 폐광산지역의 토양 내 중금속 농도 샘플링 데이터로부터 격자형 기반의 토양오염지도를 작성하였다. 해당 지도의 예측 오차에 영향을 미친다고 판단된 5개 인자를 선정하고, Leave-one-out 기법을 기반으로 인자의 옵션과 설정값의 변화에 따른 예측값과 실측값 간의 평균제곱근오차(root mean square error, RMSE) 변화를 분석하였다. 이후 머신러닝 알고리즘을 이용하여 RMSE에 영향을 미치는 상위 3개 인자를 도출하였다. 그 결과, Standard interpolation에서는 Variogram Model, Minimum Neighbors, Anisotropy 인자가 RMSE에 가장 큰 영향을 미치는 것으로 분석되었다. 베리오그램 모델에서는 Spherical 모델이 가장 낮은 RMSE를 보였으며, Minimum Neighbors는 3에서 최젓값을 보인 후 값이 증가함에 따라 증가하였다. Anisotropy의 경우 이방성을 고려하지 않는 것이 더 적합한 것으로 나타났다. 본 연구에서는 지구통계와 머신러닝의 복합 활용을 통해 지역 규모에서 높은 신뢰성을 갖는 토양오염지도를 작성할 수 있었고, 적은 수의 토양 샘플링 데이터의 보간 작업 시 어떠한 요인들이 큰 영향을 미치는지 파악할 수 있었다.
최근 GIS(Geographic Information System)을 중심으로 다양한 정보를 지도위에 제공하고 있으며, 대표적으로 국외의 경우 구글맵, 오픈스트리트맵, 빙맵 등이 있고, 국내의 경우 네이버지도, 다음지도, 브이월드맵 등이 GIS 기술의 한 부분인 WMS(Web Map Service)를 이용하여 서비스를 제공하고 있다. 본 논문에서는 현재 서비스되고 있는 벡터장 데이터 정보를 이용하여, 조류의 흐름도 와 스트림라인의 표출 방안 알고리즘 연구 및 사용자 편의성을 고려한 해양예측모델 데이터의 가시화 방안에 대해 연구를 수행하였다. 기존의 조류 흐름도 표출 및 스트림라인 표출 알고리즘과 제안하는 방식의 성능을 비교를 하여, 기존의 기술 보다 2배 이상 빠른 표출이 되는 것을 확인하였다.
본 연구에서는 강우의 시 공간적 분포의 불규칙한 변동성을 고려한 강우-유출예측모형을 위해 인공신경망(Artificial Neural Networks: ANNs)의 기법의 일종인 자기조직화(Self Organizing Map: SOM) 이론과 역전파 학습 알고리즘(Back Propagation Algorithm: BPA을 복합적으로 이용하였다. 기존의 인공신경망 연구에서 야기된 저 갈수기의 유출량에 대한 과대평가, 홍수기의 유출량에 대한 과소평가, 예측값이 연속적으로 선행 유출량을 나타내는 Persistence 현상을 해결하기 위하여 패턴분류 성능을 지닌 SOM 이론을 예측모형의 전처리 과정으로 이용하였다. 먼저, 본 연구에서 제안한 방법은 SOM에 의해 강우-유출 관계를 분류하고, SOM에 의한 분류에 따라 각각의 모형을 구성한다. 개별적으로 구축된 모형은 유출량의 예측을 위해 각각의 양상에 따라 분류된 자료를 이용한다. 결과적으로 본 연구에서 제안한 방법은 과거의 인공신경망의 일반적인 적용에 의한 결과보다 더 나은 예측능력을 보여주었으며, 더불어 유출량의 과소 및 과대추정과 Persistence 현상과 같은 문제점이 나타나지 않았다.
차세대 3차원 디스플레이 및 서비스를 지원하기 위한 HEVC 기반 3차원 비디오 코딩 표준(3D-HEVC)이 최근 완료되었다. 3D-HEVC는 소수의 텍스처 영상(Texture image)과 깊이 영상(Depth map image)으로 구성된 Multi-view plus depth (MVD) 포맷을 효율적으로 처리하기 위한 표준으로써 H.264/AVC와 HEVC에서 사용하는 단일 계층 부호화 방법과 더불어 텍스처 영상들간, 깊이 영상들간, 텍스처 영상과 깊이 영상들간의 예측을 수행하는 인터-컴포넌트 부호화 기술을 추가적으로 사용한다. 본 논문에서는 3D-HEVC 표준의 일반적인 코딩 구조, 3D-HEVC 기술의 기반이 되는 인터-컴포넌트 부호화 기술 및 인터-컴포넌트 부호화 효율에 중요한 영향을 미치는 시차 벡터(Disparity vector) 유도 기술에 대해 상세히 소개한다. 또한 본 논문에서는 3D-HEVC의 부호화 효율을 검증하기 위해 각 시점을 HEVC로 부호화한 방법과 단순 다시점 확장 표준인 MV-HEVC와의 성능평가를 수행한다.
기계학습법의 신경망 기술을 이용한 자료분석은 질병 유전자 탐색 및 진단, 신약 개발, 약인성 간 손상 예측 등과 같은 다양한 분야에서 활용되고 있다. 질병 특징 발견을 위한 자료분석은 DNA 정보를 기반으로 이루어질 수 있다. 본 연구에서는 DNA의 분자 정보 중 DNA의 길이와 용액 내 DNA의 길이별 종 개수를 예측하는 신경망을 개발하였다. 겔 전기영동을 통한 기존 방법론의 시간 소요 한계점을 해결하고자, 미세유체역학적 농축 장치의 동역학 자료를 분석 대상으로 하여 실험 분석 과정 중의 시간 소요 문제점을 해결하였다. 동역학 자료를 공간시간 지도로 재구성하여 학습 및 예측에 필요한 계산용량을 낮추었으며, 공간시간 지도에 대한 분석 정확도를 높이기 위해 합성곱 신경망을 활용하였다. 그 결과, 단일 변수 회귀로써의 단일 DNA 길이 예측과 복합 변수 회귀로써의 다종 DNA 길이의 동시 예측 및 이진 분류로써의 DNA 혼합 종 개수 예측을 성공적으로 수행하였다. 추가적으로, 예측 과정 중 발생할 수 있는 예측 편향을 학습 자료 구성 방식을 통한 해결책을 제시하였다. 본 연구를 활용한다면, 광학 측정 자료를 이용하는 액체생검 기반의 세포유리 DNA 분석 및 암 진단 등의 의학 자료 분석을 효과적으로 수행할 수 있을 것이다.
The application of a 3-d noise prediction model is increasing as a tool for performing actual noise assessment in order to investigate the noise impact of the residential facility around a development region. However, because the appropriate plans of applying a 3-d noise prediction model is insufficient, it is important to secure the reliability of the noise prediction results generated by a 3-d noise prediction model. Therefore, this study is focused on examining a 3-d noise prediction model, and a prediction equation and input data in it. For this, the 3-d noise prediction models such as SoundPLAN, Cadna-A, IMMI is applied in road noise. After the contents of road noise equations, input data of road noise source, and input data of road noise barrier are understood, the road noise prediction results are compared and examined according to the variation of 3-d noise prediction model, road noise equation, and input data of road noise source and road noise barrier.
GSIS(Geo-Spatial Information System)는 재해 위험지역 결정에 필요한 재해 위험지역 해석에 매우 유용하므로 지도나 항공사진상에서 자료를 디지타이징 혹은 스캐닝을 통하여 지형자료를 입력하고 조사된 재해인자에 대하여 분석할 경우 광범위한 지역에 대해서 위험지역을 예측할 수 있다. 본 연구에서는 부산시 동래구 일원을 대상으로 기존의 지도, 항공사진, 인공위성영상, 토양도를 GSIS기법과 RS기법을 이용하여 산사태 발생 가능성을 레스터방식으로 분석하였다. 산사태 발생의 원인분석, 원인규명 및 산사태의 인자확인을 하였으며, 레스터자료는 사분트리구조를 이용하여 생성하고 벡터자료는 위상벡터 모델을 사용하여 두 모델의 자료를 중첩처리하여, 결과를 사분트리구조로 얻었다. 그 결과 정확한 중첩결과를 얻을 수 있었고, 통합 데이타베이스를 구축하여 필요한 정보를 획득할 수 있었으며, 위험지역을 항공사진상에 표현하여 산사태 위험지도를 작성하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.