• Title/Summary/Keyword: Prediction algorithm

Search Result 2,797, Processing Time 0.027 seconds

Long-term prediction of safety parameters with uncertainty estimation in emergency situations at nuclear power plants

  • Hyojin Kim;Jonghyun Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1630-1643
    • /
    • 2023
  • The correct situation awareness (SA) of operators is important for managing nuclear power plants (NPPs), particularly in accident-related situations. Among the three levels of SA suggested by Ensley, Level 3 SA (i.e., projection of the future status of the situation) is challenging because of the complexity of NPPs as well as the uncertainty of accidents. Hence, several prediction methods using artificial intelligence techniques have been proposed to assist operators in accident prediction. However, these methods only predict short-term plant status (e.g., the status after a few minutes) and do not provide information regarding the uncertainty associated with the prediction. This paper proposes an algorithm that can predict the multivariate and long-term behavior of plant parameters for 2 h with 120 steps and provide the uncertainty of the prediction. The algorithm applies bidirectional long short-term memory and an attention mechanism, which enable the algorithm to predict the precise long-term trends of the parameters with high prediction accuracy. A conditional variational autoencoder was used to provide uncertainty information about the network prediction. The algorithm was trained, optimized, and validated using a compact nuclear simulator for a Westinghouse 900 MWe NPP.

Application of Boosting Algorithm to Construction Accident Prediction (건설재해 사전 예측을 위한 부스팅 알고리즘 적용)

  • Cho, Ye-Rim;Shin, Yoon-Seok;Kim, Gwang-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.73-74
    • /
    • 2016
  • Although various research is being carried out to prevent the construction accidents, the number of victims of construction site is increasing continuously. Therefore, the purpose of this study is construction accidents prediction applying the boosting algorithm to the construction domains. Boosting algorithm was applied to construct construction accident prediction model and application of the model was examined using actual accident cases. It is possible to support safety manager to manage and prevent accidents in priority using the model.

  • PDF

Dam Sensor Outlier Detection using Mixed Prediction Model and Supervised Learning

  • Park, Chang-Mok
    • International journal of advanced smart convergence
    • /
    • v.7 no.1
    • /
    • pp.24-32
    • /
    • 2018
  • An outlier detection method using mixed prediction model has been described in this paper. The mixed prediction model consists of time-series model and regression model. The parameter estimation of the prediction model was performed using supervised learning and a genetic algorithm is adopted for a learning method. The experiments were performed in artificial and real data set. The prediction performance is compared with the existing prediction methods using artificial data. Outlier detection is conducted using the real sensor measurements in a dam. The validity of the proposed method was shown in the experiments.

Estimation of Smart Election System data

  • Park, Hyun-Sook;Hong, You-Sik
    • International journal of advanced smart convergence
    • /
    • v.7 no.2
    • /
    • pp.67-72
    • /
    • 2018
  • On the internal based search, the big data inference, which is failed in the president's election in the United States of America in 2016, is failed, because the prediction method is used on the base of the searching numerical value of a candidate for the presidency. Also the Flu Trend service is opened by the Google in 2008. But the Google was embarrassed for the fame's failure for the killing flu prediction system in 2011 and the prediction of presidential election in 2016. In this paper, using the virtual vote algorithm for virtual election and data mining method, the election prediction algorithm is proposed and unpacked. And also the WEKA DB is unpacked. Especially in this paper, using the K means algorithm and XEDOS tools, the prediction of election results is unpacked efficiently. Also using the analysis of the WEKA DB, the smart election prediction system is proposed in this paper.

Bi-LSTM model with time distribution for bandwidth prediction in mobile networks

  • Hyeonji Lee;Yoohwa Kang;Minju Gwak;Donghyeok An
    • ETRI Journal
    • /
    • v.46 no.2
    • /
    • pp.205-217
    • /
    • 2024
  • We propose a bandwidth prediction approach based on deep learning. The approach is intended to accurately predict the bandwidth of various types of mobile networks. We first use a machine learning technique, namely, the gradient boosting algorithm, to recognize the connected mobile network. Second, we apply a handover detection algorithm based on network recognition to account for vertical handover that causes the bandwidth variance. Third, as the communication performance offered by 3G, 4G, and 5G networks varies, we suggest a bidirectional long short-term memory model with time distribution for bandwidth prediction per network. To increase the prediction accuracy, pretraining and fine-tuning are applied for each type of network. We use a dataset collected at University College Cork for network recognition, handover detection, and bandwidth prediction. The performance evaluation indicates that the handover detection algorithm achieves 88.5% accuracy, and the bandwidth prediction model achieves a high accuracy, with a root-mean-square error of only 2.12%.

Prediction of the DO concentration using the machine learning algorithm: case study in Oncheoncheon, Republic of Korea

  • Lim, Heesung;An, Hyunuk;Choi, Eunhyuk;Kim, Yeonsu
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.1029-1037
    • /
    • 2020
  • The machine learning algorithm has been widely used in water-related fields such as water resources, water management, hydrology, atmospheric science, water quality, water level prediction, weather forecasting, water discharge prediction, water quality forecasting, etc. However, water quality prediction studies based on the machine learning algorithm are limited compared to other water-related applications because of the limited water quality data. Most of the previous water quality prediction studies have predicted monthly water quality, which is useful information but not enough from a practical aspect. In this study, we predicted the dissolved oxygen (DO) using recurrent neural network with long short-term memory model recurrent neural network long-short term memory (RNN-LSTM) algorithms with hourly- and daily-datasets. Bugok Bridge in Oncheoncheon, located in Busan, where the data was collected in real time, was selected as the target for the DO prediction. The 10-month (temperature, wind speed, and relative humidity) data were used as time prediction inputs, and the 5-year (temperature, wind speed, relative humidity, and rainfall) data were used as the daily forecast inputs. Missing data were filled by linear interpolation. The prediction model was coded based on TensorFlow, an open-source library developed by Google. The performance of the RNN-LSTM algorithm for the hourly- or daily-based water quality prediction was tested and analyzed. Research results showed that the hourly data for the water quality is useful for machine learning, and the RNN-LSTM algorithm has potential to be used for hourly- or daily-based water quality forecasting.

Development of a Real-Time Algorithm for Isometric Pinch Force Prediction from Electromyogram (EMG) (근전도 기반의 실시간 등척성 손가락 힘 예측 알고리즘 개발)

  • Choi, Chang-Mok;Kwon, Sun-Cheol;Park, Won-Il;Shin, Mi-Hye;Kim, Jung
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1588-1593
    • /
    • 2008
  • This paper describes a real-time isometric pinch force prediction algorithm from surface electromyogram (sEMG) using multilayer perceptron (MLP) for human robot interactive applications. The activities of seven muscles which are observable from surface electrodes and also related to the movements of the thumb and index finger joints were recorded during pinch force experiments. For the successful implementation of the real-time prediction algorithm, an off-line analysis was performed using the recorded activities. Four muscles were selected for the force prediction by using the Fisher linear discriminant analysis among seven muscles, and the four muscle activities provided effective information for mapping sEMG to the pinch force. The MLP structure was designed to make training efficient and to avoid both under- and over-fitting problems. The pinch force prediction algorithm was tested on five volunteers and the results were evaluated using two criteria: normalized root mean squared error (NRMSE) and correlation (CORR). The training time for the subjects was only 2 min 29 sec, but the prediction results were successful with NRMSE = 0.112 ${\pm}$ 0.082 and CORR = 0.932 ${\pm}$ 0.058. These results imply that the proposed algorithm is useful to measure the produced pinch force without force sensors in real-time. The possible applications include controlling bionic finger robot systems to overcome finger paralysis or amputation.

  • PDF

AllEC: An Implementation of Application for EC Numbers Prediction based on AEC Algorithm

  • Park, Juyeon;Park, Mingyu;Han, Sora;Kim, Jeongdong;Oh, Taejin;Lee, Hyun
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.201-212
    • /
    • 2022
  • With the development of sequencing technology, there is a need for technology to predict the function of the protein sequence. Enzyme Commission (EC) numbers are becoming markers that distinguish the function of the sequence. In particular, many researchers are researching various methods of predicting the EC numbers of protein sequences based on deep learning. However, as studies using various methods exist, a problem arises, in which the exact prediction result of the sequence is unknown. To solve this problem, this paper proposes an All Enzyme Commission (AEC) algorithm. The proposed AEC is an algorithm that executes various prediction methods and integrates the results when predicting sequences. This algorithm uses duplicates to give more weights when duplicate values are obtained from multiple methods. The largest value, among the final prediction result values for each method to which the weight is applied, is the final prediction result. Moreover, for the convenience of researchers, the proposed algorithm is provided through the AllEC web services. They can use the algorithms regardless of the operating systems, installation, or operating environment.

Prediction-based Dynamic Thread Pool System for Massively Multi-player Online Game Server

  • Ju, Woo-Suk;Im, Choong-Jae
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.6
    • /
    • pp.876-881
    • /
    • 2009
  • Online game servers usually has been using the static thread pool system. But this system is not fit for huge online game server because the overhead is always up-and-down. Therefore, in this paper, we suggest the new algorithm for huge online game server. This algorithm is based on the prediction-based dynamic thread pool system. But it was developed for web servers and every 0.1 seconds the system prediction the needed numbers of threads and determine the thread pool size. Some experimental results show that the check time of 0.4 seconds is the best one for online game server and if the number of worker threads do not excess or lack to the given threshold then we do not predict and keep the current state. Otherwise we apply the prediction algorithm and change the number of threads. Some experimental results shows that this proposed algorithm reduce the overhead massively and make the performance of huge online game server improved in comparison to the static thread pool system.

  • PDF

Design of a User Location Prediction Algorithm Using the Cache Scheme (캐시 기법을 이용한 위치 예측 알고리즘 설계)

  • Son, Byoung-Hee;Kim, Sang-Hee;Nahm, Eui-Seok;Kim, Hag-Bae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.6B
    • /
    • pp.375-381
    • /
    • 2007
  • This paper focuses on the prediction algorithm among the context-awareness technologies. With a representative algorithm, Bayesian Networks, it is difficult to realize a context-aware as well as to decrease process time in real-time environment. Moreover, it is also hard to be sure about the accuracy and reliability of prediction. One of the simplest algorithms is the sequential matching algorithm. We use it by adding the proposed Cache Scheme. It is adequate for a context-aware service adapting user's habit and reducing the processing time by average 48.7% in this paper. Thus, we propose a design method of user location prediction algorithm that uses sequential matching with the cache scheme by taking user's habit or behavior into consideration. The novel approach will be dealt in a different way compared to the conventional prediction algorithm.