• Title/Summary/Keyword: Prediction Technique

Search Result 2,067, Processing Time 0.033 seconds

An Empirical Study on Aircraft Repair Parts Prediction Model Using Machine Learning (머신러닝을 이용한 항공기 수리부속 예측 모델의 실증적 연구)

  • Lee, Chang-Ho;Kim, Woong-Yi;Choi, Youn-Chul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.26 no.4
    • /
    • pp.101-109
    • /
    • 2018
  • In order to predict the future needs of the aircraft repair parts, each military group develops and applies various techniques to their characteristics. However, the aircraft and the equipped weapon systems are becoming increasingly advanced, and there is a problem in improving the hit rate by applying the existing demand prediction technique due to the change of the aircraft condition according to the long term operation of the aircraft. In this study, we propose a new prediction model based on the conventional time-series analysis technique to improve the prediction accuracy of aircraft repair parts by using machine learning model. And we show the most effective predictive method by demonstrating the change of hit rate based on actual data.

Tracking of Moving Object using Fuzzy Prediction (퍼지 예측을 이용한 이동물체 추적)

  • Lim, Yong-Ho;Baek, Joong-Hwan;Hwang, Soo-Chan
    • Journal of Advanced Navigation Technology
    • /
    • v.5 no.1
    • /
    • pp.26-36
    • /
    • 2001
  • One of the most important problems in time-varying image sequences is the automatic target tracking. This paper proposes a position prediction and tracking technique of moving object using fuzzy prediction. First, the object is segmented from background of the image using accumulative difference image technique. Then centroid of the segmented object is extracted by using the centroid method, and we propose to apply variable size searching window to the object in order to increase the tracking performance. Also, non-linear prediction is required for efficient object tracking. Therefore, in this paper, fuzzy prediction method is proposed for predicting the location of the moving object at next frame. An experimental result shows that the proposed fuzzy prediction system tracks the moving object in stable under various conditions.

  • PDF

Artificial neural network algorithm comparison for exchange rate prediction

  • Shin, Noo Ri;Yun, Dai Yeol;Hwang, Chi-gon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.125-130
    • /
    • 2020
  • At the end of 1997, the volatility of the exchange rate intensified as the nation's exchange rate system was converted into a free-floating exchange rate system. As a result, managing the exchange rate is becoming a very important task, and the need for forecasting the exchange rate is growing. The exchange rate prediction model using the existing exchange rate prediction method, statistical technique, cannot find a nonlinear pattern of the time series variable, and it is difficult to analyze the time series with the variability cluster phenomenon. And as the number of variables to be analyzed increases, the number of parameters to be estimated increases, and it is not easy to interpret the meaning of the estimated coefficients. Accordingly, the exchange rate prediction model using artificial neural network, rather than statistical technique, is presented. Using DNN, which is the basis of deep learning among artificial neural networks, and LSTM, a recurrent neural network model, the number of hidden layers, neurons, and activation function changes of each model found the optimal exchange rate prediction model. The study found that although there were model differences, LSTM models performed better than DNN models and performed best when the activation function was Tanh.

Analysis of delay compensation in real-time dynamic hybrid testing with large integration time-step

  • Zhu, Fei;Wang, Jin-Ting;Jin, Feng;Gui, Yao;Zhou, Meng-Xia
    • Smart Structures and Systems
    • /
    • v.14 no.6
    • /
    • pp.1269-1289
    • /
    • 2014
  • With the sub-stepping technique, the numerical analysis in real-time dynamic hybrid testing is split into the response analysis and signal generation tasks. Two target computers that operate in real-time may be assigned to implement these two tasks, respectively, for fully extending the simulation scale of the numerical substructure. In this case, the integration time-step of solving the dynamic response of the numerical substructure can be dozens of times bigger than the sampling time-step of the controller. The time delay between the real and desired feedback forces becomes more striking, which challenges the well-developed delay compensation methods in real-time dynamic hybrid testing. This paper focuses on displacement prediction and force correction for delay compensation in the real-time dynamic hybrid testing with a large integration time-step. A new displacement prediction scheme is proposed based on recently-developed explicit integration algorithms and compared with several commonly-used prediction procedures. The evaluation of its prediction accuracy is carried out theoretically, numerically and experimentally. Results indicate that the accuracy and effectiveness of the proposed prediction method are of significance.

Prediction method of slope hazards using a decision tree model (의사결정나무모형을 이용한 급경사지재해 예측기법)

  • Song, Young-Suk;Chae, Byung-Gon;Cho, Yong-Chan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1365-1371
    • /
    • 2008
  • Based on the data obtained from field investigation and soil testing to slope hazards occurrence section and non-occurrence section in gneiss area, a prediction technique was developed by the use of a decision tree model. The slope hazards data of Seoul and Kyonggi Province were 104 sections in gneiss area. The number of data applied in developing prediction model was 61 sections except a vacant value. The statistical analyses using the decision tree model were applied to the entrophy index. As the results of analyses, a slope angle, a degree of saturation and an elevation were selected as the classification standard. The prediction model of decision tree using entrophy index is most likely accurate. The classification standard of the selected prediction model is composed of the slope angle, the degree of saturation and the elevation from the first choice stage. The classification standard values of the slope angle, the degree of saturation and elevation are $17.9^{\circ}$, 52.1% and 320m, respectively.

  • PDF

A Study on the Development of University Students Dropout Prediction Model Using Ensemble Technique (앙상블 기법을 활용한 대학생 중도탈락 예측 모형 개발)

  • Park, Sangsung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.17 no.1
    • /
    • pp.109-115
    • /
    • 2021
  • The number of freshmen at universities is decreasing due to the recent decline in the school-age population, and the survival of many universities is threatened. To overcome this situation, universities are seeking ways to use big data within the school to improve the quality of education. A study on the prediction of dropout students is a representative case of using big data in universities. The dropout prediction can prepare a systematic management plan by identifying students who will drop out of school due to reasons such as dropout or expulsion. In the case of actual on-campus data, a large number of missing values are included because it is collected and managed by various departments. For this reason, it is necessary to construct a model by effectively reflecting the missing values. In this study, we propose a university student dropout prediction model based on eXtreme Gradient Boost that can be applied to data with many missing values and shows high performance. In order to examine the practical applicability of the proposed model, an experiment was performed using data from C University in Chungbuk. As a result of the experiment, the prediction performance of the proposed model was found to be excellent. The management strategy of dropout students can be established through the prediction results of the model proposed in this paper.

Validation of OpenDrift-Based Drifter Trajectory Prediction Technique for Maritime Search and Rescue

  • Ji-Chang Kim;Dae, Hun, Yu;Jung-eun Sim;Young-Tae Son;Ki-Young Bang;Sungwon Shin
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.145-157
    • /
    • 2023
  • Due to a recent increase in maritime activities in South Korea, the frequency of maritime distress is escalating and poses a significant threat to lives and property. The aim of this study was to validate a drift trajectory prediction technique to help mitigate the damages caused by maritime distress incidents. In this study, OpenDrift was verified using satellite drifter data from the Korea Hydrographic and Oceanographic Agency. OpenDrift is a Monte-Carlo-based Lagrangian trajectory modeling framework that allows for considering leeway, an important factor in predicting the movement of floating marine objects. The simulation results showed no significant differences in the performance of drift trajectory prediction when considering leeway using four evaluation methods (normalized cumulative Lagrangian separation, root mean squared error, mean absolute error, and Euclidean distance). However, leeway improved the performance in an analysis of location prediction conformance for maritime search and rescue operations. Therefore, the findings of this study suggest that it is important to consider leeway in drift trajectory prediction for effective maritime search and rescue operations. The results could help with future research on drift trajectory prediction of various floating objects, including marine debris, satellite drifters, and sea ice.

Validation of the Strain Pattern Analysis (SPA) Measuring Technique (헬리콥터 Blade의 모드해석에 적용된 응력패턴해석 계측기법의 타당성)

  • Pakshir, Nabi
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.361-369
    • /
    • 1996
  • The accurate prediction of modal parameters of a rotating blade is an important requirement in the assessment of the dynamics of a helicopter rotor. Indeed, predictions of flight loads and stability are normally dependent on initially predicting the undamped mode shapes. A measuring technique, known as Strain Pattern Analysis (SPA), appears to be the most successful technique for measuring the mode shapes of rotating blades. This method was developed to be used on actual aircraft so no attempt was made to measure rotating mode shapes directly in order to validate the SPA method. This report summarizes results from experimental investigations which were carried out to validate the SPA method for the prediction of aerodynamically damped modes of a rotating blade. A series of modal tests were carried out on two rotor models in which the non-rotating, undamped and aerodynamically damped rotating modes were measured directly (strain and displacement patterns). It is shown that the SPA method to be very successful in itself but there are a number of limitations in validating this technique. To provide data which could be used to confidently validate theoretical prediction codes, existing limitations should be addressed.

  • PDF

A Study on the Performance Prediction Technique for Small Hydro Power Plants (소수력발전소의 성능예측 기법)

  • Park, Wan-Soon;Lee, Chul-Hyung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.1
    • /
    • pp.61-68
    • /
    • 2003
  • This paper presents the methodology to analyze flow duration characteristics and performance prediction technique for small hydro power(SHP) Plants and its application. The flow duration curve can be decided by using monthly rainfall data at the most of the SHP sites with no useful hydrological data. It was proved that the monthly rainfall data can be characterized by using the cumulative density function of Weibull distribution and Thiessen method were adopted to decide flow duration curve at SHP plants. And, the performance prediction technique has been studied and development. One SHP plant was selected and performance characteristics was analyzed by using the developed technique, Primary design specfications such as design flowrate, plant capacity, operational rate and annual electricity production for the SHP plant were estimated, It was found that the methodology developed in this study can be a useful tool to predict the performance of SHP plants and candidate sites in Korea.

Development of Mongolian Numerical Weather Prediction System (MNWPS) Based on Cluster System (클러스터 기반의 몽골기상청 수치예보시스템 개발)

  • Lee, Yong Hee;Chang, Dong-Eon;Cho, Chun-Ho;Ahn, Kwang-Deuk;Chung, Hyo-Sang;Gomboluudev, P.
    • Atmosphere
    • /
    • v.15 no.1
    • /
    • pp.35-46
    • /
    • 2005
  • Today, the outreach of National Meteorological Service such as PC cluster based Numerical Weather Prediction (NWP) technique is vigorous in the world wide. In this regard, WMO (World Meteorological Organization) asked KMA (Korea Meteorological Administration) to formulate a regional project, which cover most of RA II members, using similar technical system with KMA's. In that sense, Meteorological Research Institute (METRI) in KMA developed Mongolian NWP System (MNWPS) based on PC cluster and transferred the technology to Weather Service Center in Mongolia. The hybrid parallel algorithm and channel bonding technique were adopted to cut cost and showed 41% faster performance than single MPI (Message Passing Interface) approach. The cluster technique of Beowulf type was also adopted for convenient management and saving resources. The Linux based free operating system provide very cost effective solution for operating multi-nodes. Additionally, the GNU software provide many tools, utilities and applications for construction and management of a cluster. A flash flood event happened in Mongolia (2 September 2003) was selected for test run, and MNWPS successfully simulated the event with initial and boundary condition from Global Data Assimilation and Prediction System (GDAPS) of KMA. Now, the cluster based NWP System in Mongolia has been operated for local prediction around the region and provided various auxiliary charts.