• Title/Summary/Keyword: Prediction System

Search Result 6,595, Processing Time 0.043 seconds

EEG Feature Engineering for Machine Learning-Based CPAP Titration Optimization in Obstructive Sleep Apnea

  • Juhyeong Kang;Yeojin Kim;Jiseon Yang;Seungwon Chung;Sungeun Hwang;Uran Oh;Hyang Woon Lee
    • International journal of advanced smart convergence
    • /
    • v.12 no.3
    • /
    • pp.89-103
    • /
    • 2023
  • Obstructive sleep apnea (OSA) is one of the most prevalent sleep disorders that can lead to serious consequences, including hypertension and/or cardiovascular diseases, if not treated promptly. Continuous positive airway pressure (CPAP) is widely recognized as the most effective treatment for OSA, which needs the proper titration of airway pressure to achieve the most effective treatment results. However, the process of CPAP titration can be time-consuming and cumbersome. There is a growing importance in predicting personalized CPAP pressure before CPAP treatment. The primary objective of this study was to optimize the CPAP titration process for obstructive sleep apnea patients through EEG feature engineering with machine learning techniques. We aimed to identify and utilize the most critical EEG features to forecast key OSA predictive indicators, ultimately facilitating more precise and personalized CPAP treatment strategies. Here, we analyzed 126 OSA patients' PSG datasets before and after the CPAP treatment. We extracted 29 EEG features to predict the features that have high importance on the OSA prediction index which are AHI and SpO2 by applying the Shapley Additive exPlanation (SHAP) method. Through extracted EEG features, we confirmed the six EEG features that had high importance in predicting AHI and SpO2 using XGBoost, Support Vector Machine regression, and Random Forest Regression. By utilizing the predictive capabilities of EEG-derived features for AHI and SpO2, we can better understand and evaluate the condition of patients undergoing CPAP treatment. The ability to predict these key indicators accurately provides more immediate insight into the patient's sleep quality and potential disturbances. This not only ensures the efficiency of the diagnostic process but also provides more tailored and effective treatment approach. Consequently, the integration of EEG analysis into the sleep study protocol has the potential to revolutionize sleep diagnostics, offering a time-saving, and ultimately more effective evaluation for patients with sleep-related disorders.

Fake News Detection on YouTube Using Related Video Information (관련 동영상 정보를 활용한 YouTube 가짜뉴스 탐지 기법)

  • Junho Kim;Yongjun Shin;Hyunchul Ahn
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.19-36
    • /
    • 2023
  • As advances in information and communication technology have made it easier for anyone to produce and disseminate information, a new problem has emerged: fake news, which is false information intentionally shared to mislead people. Initially spread mainly through text, fake news has gradually evolved and is now distributed in multimedia formats. Since its founding in 2005, YouTube has become the world's leading video platform and is used by most people worldwide. However, it has also become a primary source of fake news, causing social problems. Various researchers have been working on detecting fake news on YouTube. There are content-based and background information-based approaches to fake news detection. Still, content-based approaches are dominant when looking at conventional fake news research and YouTube fake news detection research. This study proposes a fake news detection method based on background information rather than content-based fake news detection. In detail, we suggest detecting fake news by utilizing related video information from YouTube. Specifically, the method detects fake news through CNN, a deep learning network, from the vectorized information obtained from related videos and the original video using Doc2vec, an embedding technique. The empirical analysis shows that the proposed method has better prediction performance than the existing content-based approach to detecting fake news on YouTube. The proposed method in this study contributes to making our society safer and more reliable by preventing the spread of fake news on YouTube, which is highly contagious.

Measurements of Void Concentration Parameters in the Drift-Flux Model (상대유량 모델내의 기포분포계수 측정에 관한 연구)

  • Yun, B.J.;Park, G.C.;Chung, C.H.
    • Nuclear Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.91-101
    • /
    • 1993
  • To predict accurately the thermal hydraulic behavior of light water reactors during normal or abnormal operation, the accurate estimation of the void distribution is required. Up to date, many techniques for predicting void fraction of two-phase flow systems have been suggested. Among these techniques, the drift-flux model is widely used because of its exact calculation ability and simplicity. However, to get more accurate prediction of void fraction using drift-flux model, slip and flow regime effects must be considered more properly In the drift-flux method, these two effects are accounted for by two drift-flux parameters ; $C_{o}$ and (equation omitted). At earlier stage, $C_{o}$ is measured in a circular tube. In this study, $C_{o}$ is experimentally determined by measuring local void fraction and vapor velocity distribution in a rectangular subchannel having 4 heating rods which simulates nuclear subchannels. The measurements are peformed with two-electrical conductivity probes which are known to be adequate for measuring local parameters. The experiments are performed at low flow rate and the system pressure less than 3 atmo spheric pressure. In this experiment, (equation omitted), is not measured, but quoted from well-known empirical correlation to formulate $C_{o}$. Finally, $C_{o}$ is expressed as a function of channel averaged void fraction. fraction.

  • PDF

Machine Learning-based Phase Picking Algorithm of P and S Waves for Distributed Acoustic Sensing Data (분포형 광섬유 센서 자료 적용을 위한 기계학습 기반 P, S파 위상 발췌 알고리즘 개발)

  • Yonggyu, Choi;Youngseok, Song;Soon Jee, Seol;Joongmoo, Byun
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.4
    • /
    • pp.177-188
    • /
    • 2022
  • Recently, the application of distributed acoustic sensors (DAS), which can replace geophones and seismometers, has significantly increased along with interest in micro-seismic monitoring technique, which is one of the CO2 storage monitoring techniques. A significant amount of temporally and spatially continuous data is recorded in a DAS monitoring system, thereby necessitating fast and accurate data processing techniques. Because event detection and seismic phase picking are the most basic data processing techniques, they should be performed on all data. In this study, a machine learning-based P, S wave phase picking algorithm was developed to compensate for the limitations of conventional phase picking algorithms, and it was modified using a transfer learning technique for the application of DAS data consisting of a single component with a low signal-to-noise ratio. Our model was constructed by modifying the convolution-based EQTransformer, which performs well in phase picking, to the ResUNet structure. Not only the global earthquake dataset, STEAD but also the augmented dataset was used as training datasets to enhance the prediction performance on the unseen characteristics of the target dataset. The performance of the developed algorithm was verified using K-net and KiK-net data with characteristics different from the training data. Additionally, after modifying the trained model to suit DAS data using the transfer learning technique, the performance was verified by applying it to the DAS field data measured in the Pohang Janggi basin.

A study on the detection of fake news - The Comparison of detection performance according to the use of social engagement networks (그래프 임베딩을 활용한 코로나19 가짜뉴스 탐지 연구 - 사회적 참여 네트워크의 이용 여부에 따른 탐지 성능 비교)

  • Jeong, Iitae;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.197-216
    • /
    • 2022
  • With the development of Internet and mobile technology and the spread of social media, a large amount of information is being generated and distributed online. Some of them are useful information for the public, but others are misleading information. The misleading information, so-called 'fake news', has been causing great harm to our society in recent years. Since the global spread of COVID-19 in 2020, much of fake news has been distributed online. Unlike other fake news, fake news related to COVID-19 can threaten people's health and even their lives. Therefore, intelligent technology that automatically detects and prevents fake news related to COVID-19 is a meaningful research topic to improve social health. Fake news related to COVID-19 has spread rapidly through social media, however, there have been few studies in Korea that proposed intelligent fake news detection using the information about how the fake news spreads through social media. Under this background, we propose a novel model that uses Graph2vec, one of the graph embedding methods, to effectively detect fake news related to COVID-19. The mainstream approaches of fake news detection have focused on news content, i.e., characteristics of the text, but the proposed model in this study can exploit information transmission relationships in social engagement networks when detecting fake news related to COVID-19. Experiments using a real-world data set have shown that our proposed model outperforms traditional models from the perspectives of prediction accuracy.

Prediction of Physical Properties and Shear Wave Velocity of the Ground Using the Flat TDR System (Flat TDR 시스템을 이용한 지반의 물리적 특성 및 전단파속도 예측)

  • Jeong, Chanwook;Kim, Daehyeon
    • The Journal of Engineering Geology
    • /
    • v.32 no.1
    • /
    • pp.173-191
    • /
    • 2022
  • In this study, the shear wave velocity of the ground was measured using Flat TDR, and the precision analysis of the measured value and the verification of field applicability were performed. The shear wave velocity measurement value was derived in the field using the piezo-stack combined in the Flat TDR. analyzed. As a result of the experiment, the average value of the change in shear wave speed at the time of grout material injection was 10.15 m/s at the beginning of age, and the average value of the change in shear wave speed after the 7th to 14th days was 65.99 m/s, showing a tendency to increase with age. Also, it was found that dry density and shear wave speed increased as the water content increased on the dry side, and that the dry density and shear wave rate decreased as the water content increased on the wet side as the water content increased. The shear modulus value derived from the field test was confirmed to be a minimum of 17.36 MPa and a maximum of 28.13 MPa, confirming a measurement value similar to the reference value. Through this, it can be seen that the measured value of the shear modulus using Flat TDR is reliable data, and it can be determined that the compaction management of the site can be effectively managed in the future.

COVID-19-related Korean Fake News Detection Using Occurrence Frequencies of Parts of Speech (품사별 출현 빈도를 활용한 코로나19 관련 한국어 가짜뉴스 탐지)

  • Jihyeok Kim;Hyunchul Ahn
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.267-283
    • /
    • 2023
  • The COVID-19 pandemic, which began in December 2019 and continues to this day, has left the public needing information to help them cope with the pandemic. However, COVID-19-related fake news on social media seriously threatens the public's health. In particular, if fake news related to COVID-19 is massively spread with similar content, the time required for verification to determine whether it is genuine or fake will be prolonged, posing a severe threat to our society. In response, academics have been actively researching intelligent models that can quickly detect COVID-19-related fake news. Still, the data used in most of the existing studies are in English, and studies on Korean fake news detection are scarce. In this study, we collect data on COVID-19-related fake news written in Korean that is spread on social media and propose an intelligent fake news detection model using it. The proposed model utilizes the frequency information of parts of speech, one of the linguistic characteristics, to improve the prediction performance of the fake news detection model based on Doc2Vec, a document embedding technique mainly used in prior studies. The empirical analysis shows that the proposed model can more accurately identify Korean COVID-19-related fake news by increasing the recall and F1 score compared to the comparison model.

Prediction System for Turbidity Exclusion in Imha Reservoir (임하호 탁수 대응을 위한 예측 시스템)

  • Jeong, Seokil;Choi, Hyun Gu;Kim, Hwa Yeong;Lim, Tae Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.487-487
    • /
    • 2021
  • 탁수는 유기물 또는 무기물이 유입되면서 빛의 투과성이 낮아진 수체를 의미한다. 탁수가 발생하게 되면 어류의 폐사, 정수처리 비용의 증가 및 경관의 변화로 인한 피해가 발생하게 된다. 국내에서는 홍수기 또는 태풍 시 유역의 토사가 저수지 상류에서 유입하여 호내의 탁수를 발생시키는 경우가 있는데, 특히 낙동강 유역의 임하호에서 빈번하게 고탁수가 발생하여 왔다. 본 연구에서는 임하호에서 탁수 발생 시 신속 배제를 위한 수치적인 예측 시스템을 소개하고자 한다. 저수지 탁수관리의 기본개념은 용수공급능력을 고려한 고탁수의 신속한 배제이다. 이는 선제적 의사결정을 요구하므로, 지류에서 탁수가 발생한 즉시 향후 상황에 대한 예측이 필요하다. 이러한 예측을 위해 유역관리처는 3단계의 수치해석을 수행한다. 첫 번째는 유역 상류에서 탁수가 감지되었을 때, 호 내 탁수의 분포를 예측하는 것이다. 수심 및 수평방향의 탁수 분포에 대한 상세한 결과가 도출되어야 하기에, 3차원 수치해석 프로그램인 AEM3D를 이용한다. 이때, 과거 고탁수 유입에 대한 자료를 기반으로 산정된 매개변수가 적용된다. 두 번째는 예측된 호내 분포를 초기조건으로 댐 방류량 및 취수탑 위치(선택배제)에 따른 탁수 배제 수치해석을 수행하게 된다. 다양하고 많은 case에 대한 신속한 모의 및 3달 이상의 장기간 예측을 요구하므로, 2차원 수치모델인 CE-QUAL-W2를 활용한다. 이 단계에서 수자원의 안정적 공급이 가능한 범위 내에서 효과적인 탁수 배제 방류 방법 등이 결정되며, 방류 탁도가 예측된다. 세 번째 단계는 방류탁도를 경계조건으로 하여 하류 하천(반변천~내성천 합류 전)의 탁도를 예측하는 것이다. 하천의 탁도 예측은 국내뿐만 아니라 국외에서도 그 사례를 찾아보기가 쉽지 않은데, 이는 중소형의 지류에 대한 입력자료가 충분하지 않고 불확실성이 높기 때문이다. 이에 과거 10여 년의 data를 이용한 회귀분석을 통해 탁수 발생물질(SS)-부유사-유량과의 관계를 도출하고, 2차원 하천모델(EFDC)을 이용하여 수심 평균 탁도를 예측하게 된다. 이러한 세 단계의 예측은 탁수가 호내로 유입됨에 따라 반복되고, 점차 예측 정확도가 향상되게 된다. 세 단계의 과정을 통한 임하호 탁수의 조기 배제는 현재 적지 않은 효과를 거두고 있다고 판단된다. 그러나 탁수를 발생시키는 현탁물질의 종류는 매번 일정하지 않기 때문에, 이러한 예측 시스템에 정확도에 영향을 줄 수 있으므로, 여러 상황을 고려한 딥러닝을 도입하여 탁수 물질에 대한 정보를 예측한다면 보다 합리적인 의사결정 지원 도구가 될 수 있을 것이다.

  • PDF

Prediction of Soil Moisture using Hydrometeorological Data in Selmacheon (수문기상자료를 이용한 설마천의 토양수분 예측)

  • Joo, Je Young;Choi, Minha;Jung, Sung Won;Lee, Seung Oh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5B
    • /
    • pp.437-444
    • /
    • 2010
  • Soil moisture has been recognized as the essential parameter when understanding the complicated relationship between land surface and atmosphere in water and energy recycling system. It has been generally known that it is related with the temperature, wind, evaporation dependent on soil properties, transpiration due to vegetations and other constituents. There is, however, little research concerned about the relationship between soil moisture and these constitutes, thus it is needed to investigate it in detail. We estimated the soil moisture and then compared with field data using the hydrometerological data such as atmospheric temperature, specific humidity, and wind obtained from the Flux tower in Selmacheon, Korea. In the winter season, subterranean temperature showed highly positive correlation with soil moisture while it was negatively correlated from the spring to the fall. Estimation of seasonal soil moisture was compared with field measurements with the correlation of determination, R=0.82, 0.81, 0.82, and 0.96 for spring, summer, fall, and winter, respectively. Comprehensive relationship from this study can supply useful information about the downscaling of soil moisture with relatively large spatial resolutions, and will help to deepen the understanding of the water and energy recycling on the earth's surface.

Multidimensional data generation of water distribution systems using adversarially trained autoencoder (적대적 학습 기반 오토인코더(ATAE)를 이용한 다차원 상수도관망 데이터 생성)

  • Kim, Sehyeong;Jun, Sanghoon;Jung, Donghwi
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.7
    • /
    • pp.439-449
    • /
    • 2023
  • Recent advancements in data measuring technology have facilitated the installation of various sensors, such as pressure meters and flow meters, to effectively assess the real-time conditions of water distribution systems (WDSs). However, as cities expand extensively, the factors that impact the reliability of measurements have become increasingly diverse. In particular, demand data, one of the most significant hydraulic variable in WDS, is challenging to be measured directly and is prone to missing values, making the development of accurate data generation models more important. Therefore, this paper proposes an adversarially trained autoencoder (ATAE) model based on generative deep learning techniques to accurately estimate demand data in WDSs. The proposed model utilizes two neural networks: a generative network and a discriminative network. The generative network generates demand data using the information provided from the measured pressure data, while the discriminative network evaluates the generated demand outputs and provides feedback to the generator to learn the distinctive features of the data. To validate its performance, the ATAE model is applied to a real distribution system in Austin, Texas, USA. The study analyzes the impact of data uncertainty by calculating the accuracy of ATAE's prediction results for varying levels of uncertainty in the demand and the pressure time series data. Additionally, the model's performance is evaluated by comparing the results for different data collection periods (low, average, and high demand hours) to assess its ability to generate demand data based on water consumption levels.