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Abstract 
 

Obstructive sleep apnea (OSA) is one of the most prevalent sleep disorders that can lead to serious 

consequences, including hypertension and/or cardiovascular diseases, if not treated promptly. Continuous 

positive airway pressure (CPAP) is widely recognized as the most effective treatment for OSA, which needs 

the proper titration of airway pressure to achieve the most effective treatment results. However, the process of 

CPAP titration can be time-consuming and cumbersome. There is a growing importance in predicting 

personalized CPAP pressure before CPAP treatment. The primary objective of this study was to optimize the 

CPAP titration process for obstructive sleep apnea patients through EEG feature engineering with machine 

learning techniques. We aimed to identify and utilize the most critical EEG features to forecast key OSA 

predictive indicators, ultimately facilitating more precise and personalized CPAP treatment strategies. Here, 

we analyzed 126 OSA patients' PSG datasets before and after the CPAP treatment. We extracted 29 EEG  
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features to predict the features that have high importance on the OSA prediction index which are AHI and 

SpO2 by applying the Shapley Additive exPlanation (SHAP) method. Through extracted EEG features, we 

confirmed the six EEG features that had high importance in predicting AHI and SpO2 using XGBoost, Support 

Vector Machine regression, and Random Forest Regression. By utilizing the predictive capabilities of EEG- 

derived features for AHI and SpO2, we can better understand and evaluate the condition of patients 

undergoing CPAP treatment. The ability to predict these key indicators accurately provides more immediate 

insight into the patient’s sleep quality and potential disturbances. This not only ensures the efficiency of the 

diagnostic process but also provides more tailored and effective treatment approach. Consequently, the 

integration of EEG analysis into the sleep study protocol has the potential to revolutionize sleep diagnostics, 

offering a time-saving, and ultimately more effective evaluation for patients with sleep-related disorders. 

 

Keywords: Machine Learning, Artificial Intelligence, Sleep Disorder, Healthcare, Feature Engineering, 

Polysomnography, Electroencephalography, Obstructive Sleep Apnea, Continuous Positive Airway Pressure  

 

1. Introduction 

Sleep plays a vital role in human health and daily life. The quality and quantity of sleep are influenced by 

individual circadian rhythms, stress levels, physical health, and various other factors. Notably, sleep disorders 

are associated with various health problems, leading to a decline in the quality of life [1]. Among sleep 

disorders, Obstructive Sleep Apnea (OSA) is recognized as a significant concern. OSA is characterized by 

repeated cessation of breathing during sleep, resulting in symptoms like daytime fatigue, decreased attention, 

and memory impairment [2]. 

The primary device used for treating OSA patients is the Continuous Positive Airway Pressure (CPAP). 

CPAP provides continuous positive pressure through the respiratory system, preventing the collapse of the 

upper airway and subsequent apneas. Consequently, it enhances the sleep quality of OSA patients and mitigates 

daytime symptoms [3]. When utilizing a CPAP device, the pivotal aspect is to set the appropriate pressure. For 

this, CPAP titration which is the procedure of determining the optimal pressure based on the patient’s condition 

and requirements is performed. Proper pressure settings enhance the sleep quality of OSA patients and avert 

long-term health complications [4, 5].  

The Apnea–Hypopnea Index(AHI) and oxygen saturation(SpO2) were the two main indices for indicators 

of OSA improvement. AHI represents the frequent event of apneas (complete cessations of airflow) and 

hypopneas (partial cessations of airflow) per hour of sleep. SpO2 is a measure of the amount of oxygen-

carrying hemoglobin in the blood relative to the amount of hemoglobin not carrying oxygen. Based on the 

guidelines of the American Academy of Sleep Medicine(AASM), snoring and low limitation of airflow were 

not observed at all postures and all sleep stages, and the lowest pressure was considered optimal among 

pressures with AHI below 5 and SpO2 above 90% [6]. 

Traditional CPAP titration methods have inherent limitations. Adjusting the pressure manually can be 

cumbersome and may not consistently provide the most effective results for the patient. With technological 

advancements and the rising prevalence of OSA, there is an increasing demand to integrate artificial 

intelligence into CPAP treatment to enhance its efficiency and individualize it according to the patient’s needs 

[7]. Also, relying heavily on expert judgment, manual titration can be challenging due to the varied responses 

exhibited by patients, making it difficult to determine the optimal pressure [8]. 

Attention was drawn to the AHI and SpO2 variables, which are important in predicting the optimal pressure 

for CPAP. From the EEG data, 29 features were extracted. Through modeling, the machine learning model 
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that best predicts AHI and SpO2 was identified. Features with the highest contribution to predicting the optimal 

CPAP titration were extracted and analyzed. 

In our research, we conducted an analysis employing the predictive power of EEG-derived features for AHI 

and SpO2 to enhance our understanding of patients undergoing CPAP treatment. This innovative approach 

streamlines the evaluation process, offering the potential for more tailored treatment strategies. By integrating 

EEG analysis, we aim to provide deeper insights into patient conditions, facilitating more effective therapeutic 

interventions for those with sleep-related disorders. 

 

2. Related work 

2.1 Medical Techniques for OSA Treatment 

The primary therapeutic intervention for OSA patients is the CPAP which works by delivering a continuous 

stream of air preventing the upper airway from collapsing, thereby averting apneas. As a result, it significantly 

improves the sleep quality of OSA patients and alleviates their daytime symptoms. [3]. 

There are several types of PAP devices available, including CPAP, BiPAP (Bilevel Positive Airway 

Pressure), and APAP (Automatic Positive Airway Pressure). Each device has its unique mechanism and 

application. While CPAP provides a consistent air pressure, BiPAP offers two distinct pressures: one for 

inhalation and another for exhalation. In contrast, APAP devices adjust the pressure automatically based on 

the patient’s breathing patterns throughout the night. However, APAP has its limitations that frequent pressure 

fluctuations can cause discomfort to the patient, unlike the steady pressure provided by CPAP besides the 

higher costs and increased complexity. BiPAP also has its challenges that some patients may find it difficult 

to adjust to the changing pressures, leading to discomfort.  

CPAP is not a perfect alternative either because the process of CPAP titration can be labor-intensive since 

It often involves an overnight sleep study in a lab where the patient’s breathing patterns are monitored, and the 

pressure settings are adjusted accordingly. This can be inconvenient for the patient and may require multiple 

visits to get the settings just right. Despite the challenges, medical professionals emphasize the importance of 

accurate CPAP titration. Without proper titration, the therapy may not be as effective, and the patient might 

experience discomfort or even discontinue the treatment. 

 

2.2 OSA Prediction in Sleep Data Using Machine Learning 

A large body of prior work has investigated on diagnosing OSA by analyzing EEG signals through 

classification methods. Earlier works primarily focused on using machine learning classifiers to analyze EEG 

signals related to OSA [9, 10, 11, 12]. Vimala et al. demonstrated the utility of EEG analysis for OSA diagnosis 

by utilizing Decomposed EEG signals and employing Support Vector Machine (SVM), Kernel Functions, K-

Nearest Neighbor (KNN), and Artificial Neural Network (ANN) for classification [9]. Additionally, 

Almuhammad et al. analyzed EEG signals using SVM, ANN, Linear Discriminant Analysis (LDA), and Naive 

Bayes (NB), achieving a high accuracy of 97.4% with SVM [10]. Furthermore, Zhao et al. performed EEG 

signal analysis based on EEG sub-band signal characteristics using random forest, K-nearest neighbor, and 

support vector machine classifiers [12]. Khursheed et al. analyzed EEG signals using Decision Tree and 

Random Forest ML classifiers, with the most accurate being the Random Forest method, a type of bagging, 

achieving an accuracy of 99.68% and performing effective classification [11]. Moreover, Our previous study 

has shown that OSA screening may be feasible using a model that trained only EEG characteristics in REM 
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and NREM without any respiration-related measures [13]. While prior studies have focused on machine 

learning classification for OSA diagnosis, our research aims to focus on predicting AHI and SpO2 which are 

crucial assessment variables for OSA by applying machine learning mechanisms.  

On the other hand, there has been a growing body of research that explores predicting AHI and SpO2. 

Ludwig et al. conducted a study using a support vector regressor (SVR) to predict AHI and also predicted 

arousal index and hypoxic burden extracted from the Polysomnography dataset [14]. Furthermore, Lee et al. 

divided patients into two groups, young and elderly, and predicted the AHI index using linear regression 

analysis, observing significant differences between the sleep EEG of these two groups [15]. In particular, there 

has been research on applying machine learning techniques to predict EEG signals of participants undergoing 

CPAP treatment. Kim and Yang developed a predictive model using machine learning to determine the optimal 

CPAP pressure for obese patients with obstructive sleep apnea. By analyzing the medical records of 162 OSA 

patients, they employed both a random forest model and a LASSO regression model. The study highlights the 

effectiveness of machine learning techniques in medical predictions, specifically for CPAP pressure 

optimization [16]. This paper further created a new variable that could be used to view the AHI after baseline 

as a starting point to compare the subject’s AHI before and after CPAP treatment and also attempted to predict 

SpO2.  

This paper conducts Quantitative EEG Analysis, emphasizing the significance of EEG features. Previous 

research has also analyzed the importance of EEG features using various approaches. Adams et al. employed 

Principal Component Analysis to scrutinize EEG features and demographic factors associated with depression 

using EEG data from patients with OSA. The study concluded that AHI, financial stress, partner, and 

medication were related, while insomnia with age and BMI were not correlated [17]. Additionally, Khursheed 

et al. analyzed the EEG subband by extracting four features which were energy, kurtosis, Mean Absolute 

Deviation, and skewness from EEG signals resulting in the enhancement of the performance of ML classifiers 

[11]. Based on the prior research, our study extracted variables with high impact, such as energy, kurtosis, 

deviation, and skewness, from EEG signals. 

 

3. Method 

3.1 Data Acquisition 

Data were collected from Ewha Womans University Mokdong Hospital spanning the years 2018 to 2021. 

A Grass telefactor (USA) was used for conducting polysomnography (PSG). This comprehensive system 

included: Six-channel electroencephalography (EEG) to monitor brain activity, bilateral electrooculography 

for tracking eye movements, electromyography leads placed on the submentalis and tibialis anterior muscles 

to monitor muscle activity, and electrocardiography for recording heart activity. To assess respiratory events, 

various sensors were utilized, including a nasal thermistor, nasal airflow pressure transducer, thoracic and 

abdominal strain gauges, a position sensor, and finger pulse oximetry (SpO2). Synchronized audio and video 

recordings were made throughout the PSG procedure. Sleep stages were scored in 30-second epochs following 

the guidelines outlined by the American Academy of Sleep Medicine (AASM) manual. The presence of OSA 

was determined with an AHI value of ≥5/h. The severity of OSA is determined by AHI: mild (5-14.9/h), 

moderate (15-29.9/h), and severe (≥30/h). However, other parameters reflect the severity of OSA other than 

AHI. The Oxygen Desaturation Index (ODI) quantifies how often SpO2 drops below a specific threshold. Time 

spent below SpO2 of 90% represents the amount of exposure to hypoxemia. Lowest SpO2 or mean durations 

of apnea/hypopnea events are other parameters representing the severity of OSA. In this study, SpO2 in 



EEG Feature Engineering for Machine Learning-Based CPAP Titration Optimization in Obstructive Sleep Apnea                   93 

 

 

addition to AHI was utilized to assess the severity of OSA. 

 

Table 1. Demographic characteristics of all participants 

Characteristics  All Participants (n=211) 

Sex Male 109 (87%)  

 Female 17 (13%) 

Age  54.69 ± 13.35 

BMI  27.86 ± 5.53 

 

3.2 Study Population 

A total of 153 paired datasets from patients diagnosed with OSA were initially gathered, representing data 

before treatment and during the pressure titration phase. However, datasets were excluded if they lacked PSG 

data or CPAP records, if only half-day PSG measurements were taken, or if the majority of rows in the dataset 

were marked as N/A due to input errors. After these exclusions, the final dataset comprised 126 patients, of 

which 17 were female and 109 were male. The age distribution of the patients ranged from their 20s to their 

80s. 

 

3.3 Data Preprocessing 

AHI and SpO2 are significant indicators in CPAP therapy, each bearing its unique significance. AHI 

represents the number of apneas and hypopneas per hour during sleep. An apnea indicates a complete cessation 

of breathing, while a hypopnea signifies a partial reduction in breath. The primary purpose of CPAP treatment 

is to prevent these interruptions in breathing. A high AHI suggests that the current pressure settings might not 

be optimal, making it a pivotal metric in evaluating CPAP treatment outcomes. On the other hand, SpO2 

denotes the percentage of oxygen saturation in the blood, reflecting how well oxygen is being transported. 

During sleep interruptions, the cessation of breathing can lead to a drop in SpO2 levels. The CPAP device aids 

in preventing these interruptions, ensuring a stable SpO2 level. A consistent SpO2 level is an indicator of 

effective treatment.  

If only the AHI is satisfactory (low AHI but SpO2 not within the normal range), it indicates that while the 

frequency of breathing interruptions has decreased, the oxygen saturation in the blood remains insufficient. 

This could suggest issues with the depth or quality of breathing. Conversely, if only SpO2 is satisfactory (AHI 

not within the normal range but high SpO2), it means that despite frequent short breathing interruptions, overall 

oxygen supply remains stable. In such a scenario, breathing interruptions, though brief, could be frequent. 

Thus, achieving only one of these metrics suggests an imbalance between respiratory stability and oxygen 

supply, with the goal of CPAP therapy being to satisfy both.  

The decision to set each as a separate predictive value was driven by the desire to pinpoint features that 

most influence each metric and enhance the model’s predictive accuracy. This approach potentially reduces 

the complexity compared to a composite model predicting both metrics simultaneously.  
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Figure 1. C4-A1 EEG raw data  

Furthermore, given the emphasis on feature engineering, interpretability was prioritized. Training via 

separate models for each metric allows for a clearer understanding of which features significantly impact the 

prediction of each indicator. This clarity aids in interpreting the model’s results, subsequently assisting in 

formulating more effective diagnostic and therapeutic strategies. From the six available EEG channels, the C4-

A1 channel was selected due to its central location in the brain as you can see in Figure 1. Data processing and 

feature extraction were carried out using MATLAB and Python tools. Specifically, the “eeg extraction tool” 

available on GitHub was utilized to extract 29 distinct features. 

 

 

(𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝐻𝐼 − 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝐴𝐻𝐼)

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐴𝐻𝐼
(1) 

 

In equation (1), 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝐻𝐼  variable is the AHI measured by PSG before CPAP treatment, and 

𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝐴𝐻𝐼 variable represents the AHI value per CPAP pressure. 

 

𝐻𝑗𝑜𝑟𝑡ℎ𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
1

𝑁
∑(𝑥(𝑛) − �̅�)2

𝑁

𝑛=1

(2) 

In equation (2), 𝑥(𝑛) is the EEG time series, �̅� is the average signal frequency, and 𝑁 is the number of items 

 

𝑀𝑒𝑎𝑛𝑇𝑒𝑎𝑔𝑒𝑟𝐸𝑛𝑒𝑟𝑔𝑦[𝑘] =
1

𝑁
∑ (𝑥[𝑚 − 1]2 − 𝑥[𝑚] × [𝑚 − 2])

𝑘

𝑚=𝑘−𝑁+3

(3) 

In equation (3), 𝑥[𝑚] is an EEG time series, 𝑁 is the window length and 𝑘 is the last sample in the epoch  
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𝑅𝑎𝑡𝑖𝑜𝐵𝑎𝑛𝑑𝑃𝑜𝑤𝑒𝑟𝐴𝑙𝑝ℎ𝑎𝐵𝑒𝑡𝑎 =
𝐵𝑎𝑛𝑑𝑃𝑜𝑤𝑒𝑟𝐵𝑒𝑡𝑎

𝐵𝑎𝑛𝑑𝑃𝑜𝑤𝑒𝑟𝐴𝑙𝑝ℎ𝑎
           (4) 

In equation (4), 𝐵𝑎𝑛𝑑𝑃𝑜𝑤𝑒𝑟𝐴𝑙𝑝ℎ𝑎 and 𝐵𝑎𝑛𝑑𝑃𝑜𝑤𝑒𝑟𝐵𝑒𝑡𝑎 are time that patients showed alpha signal and beta 

signal 

 

𝐴𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐𝑀𝑒𝑎𝑛 =
1

𝑁
∑ 𝑥𝑛 

𝑛=1

(5) 

In equation (5), 𝑥𝑛 is a time series, 𝑁 is the number of data points 

 

If the number of values is odd then (where N=number of items) 

𝑀𝑒𝑑𝑖𝑎𝑛𝑉𝑎𝑙𝑢𝑒 = (
𝑁 + 1

2
)

𝑡ℎ

(6) 

In equation (6), 𝑁 is the number of items 

 

If number of values is even 

𝑀𝑒𝑑𝑖𝑎𝑛𝑉𝑎𝑙𝑢𝑒 =

𝑁
2

𝑡ℎ

𝑣𝑎𝑙𝑢𝑒 + (
𝑁
2

+ 1) 𝑣𝑎𝑙𝑢𝑒

2
(7)

 

In equation (7), 𝑁 is the number of items 

 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
1

𝑁
∑ (

𝑋𝑘 − 𝑚

σ
)

3

 (8) 

In equation (8), 𝑁 is the length of the signal 𝑋, 𝑚 is the mean and σ is the standard deviation of X 

 

We calculated the correlation of all 29 variables. Figure 2 reveals the visualization result of 29 variables 

correlation. 18 Variables that have more than 0.7 correlation were dropped to avoid the curse of dimensionality 

[18], caused by the unnecessary increase in the number of parameters. Moreover, we analyzed 11 variables by 

leveraging the Variance Inflation Factor (VIF), a traditional multi-collinearity measurement method. Multi-

collinearity is a phenomenon when independent variables are not fully independent of other independent 

variables. Table 3 shows the VIF values of variables. According to the rules of thumb in the VIF method, VIF 

values more than 10, Mean Curve Length, Hjorth Mobility and Normalized First Difference, and RenyiEntropy 

were excluded. As you can see in Figure 3, the final variables based on the correlation process and VIF method 

are Hjorth Activity, Mean Teager Energy, Arithmetic Mean, Median Value, Skewness, Band Power Delta, and 

Ratio of Band Power Alpha to Beta. 
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Figure 2. Correlation 

 

First of all, Hjorth Activity is one of the Hjorth parameters (2). Hjorth parameters are used to determine 

the EEG activity [19]. The Hjorth parameters can be determined using the first and second derivatives. Activity 

quantifies the EEG signal’s mean power, while mobility computes the average signal frequency [20]. 

Complexity offers an estimate of the signal’s bandwidth. Hjorth parameters offer a statistical measure of EEG 

signal variance, which is why this method is computationally more efficient than others. In this research, three 

Hjorth parameters were utilized for extracting features from EEG signals [21]. Secondly, Mean Teager Energy 

(3) MTE is a feature that is highly used in EEG analysis. MTE was first proposed in [22] and is defined as; 

where x[m] is an EEG time series, N is the window length and k is the last sample in the epoch [23]. Next, 

Arithmetic Mean (5) Arithmetic Mean is the average of the EEG signal data points. n=1,2,3...n is a time series, 

N is the number of data points, and AM is the mean of the sample [23, 24]. In addition, Median Value (6),(7) 

Median value is a calculated median of the time series data points which have different equations based on N 

(number of items). If N is odd, use this formula (6); if N is even, use this formula (7). Also, the Ratio of Band 

Power Alpha to Beta (4) The EEG patterns, encompassing delta, theta, alpha, sigma, beta, and gamma waves, 

exhibit distinct characteristics across different sleep stages. Please refer to Table 4. In stage 1 of sleep, both 

theta waves (4-8 Hz) and alpha waves (8-12 Hz) are present. Stage 2 sees an increase in EEG signal amplitude 

along with the appearance of K-complexes, with theta waves becoming more prominent. Stage 3 highlights 

the prevalence of theta and delta waves (0-4 Hz), while in stage 4, the EEG signal frequency typically ranges 

from 0.5 to 2 Hz. During the REM period, sigma waves (12-15 Hz), beta waves (15-30 Hz), and gamma waves 

(30 Hz) dominate, resulting in an EEG signal with a frequency exceeding 12 Hz. Beta waves are also more 

prominent during wakefulness [20]. Especially, Ratio of Band Power Alpha to Beta implies the ratio of the 

time that patients had beta signal and alpha signal while they were asleep. Lastly, Skewness (8) of the EEG 

signal in the time domain is calculated with the (8) as the following: where N is the length of the signal x, x m 

is the mean and x std is the standard deviation of x [25]. 
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Table 2. Extracted Features 

Extracted Feature Meaning 

Mean Curve Length Mean length of the signal curve 

Hjorth Activity 

Signal strength of the EEG can indicate the 

overall activity 

Hjorth Mobility 

Measure representing the average 

frequency of the signal 

Hjorth Complexity 

Measure indicating the complexity or 

changes in the signal shape 

First Difference First difference of the signal 

Normalized First Difference Normalized first difference 

Second Difference Second difference of the signal 

Normalized Second Difference Normalized second difference 

Mean Energy Average energy of the signal 

Mean Teager Energy 

Average energy of the signal calculated 

using the Teager energy operator 

Log Root Sum of Sequential 

Variation 

Log root sum of sequential variation 

Tsallis Entropy 

Complexity measurement of the signal 

using Tsallis entropy 

Shannon Entropy 

Measure indicating the information content 

of the signal 

Log Energy Entropy 

Measurement of the energy distribution of 

the signal using log energy entropy 

Renyi Entropy 

Complexity measurement of the signal 

using Renyi entropy 

Arithmetic Mean Arithmetic mean of the signal 

Standard deviation 

Measure indicating the variability of the 

signal values 

Variance Variance of the signal values 

Median Value Median value of the signal 

Maximum Value Maximum value of the signal 

Minimum Value Minimum value of the signal 

Auto Regressive Model 

Statistical characteristics of the signal 

extracted using the auto-regressive model - 

Excludes 4 data points 

Kurtosis 

Measure indicating the kurtosis (how 

concentrated the data is around the mean) 

of the signal 

Skewness 

Measure indicating the asymmetry of the 

signal 

Band Power Beta 

Power of the signal in the beta frequency 

band 

Band Power Alpha 

Power of the signal in the alpha frequency 

band 

Band Power Theta 

Power of the signal in the theta frequency 

band 
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Band Power Delta 

Power of the signal in the delta frequency 

band 

Band Power Gamma 

Power of the signal in the gamma 

frequency band 

Ratio of Band Power Alpha to 

Beta 

Ratio of the signal's power in the alpha 

frequency band to that in the beta 

frequency band 

 

 

 

Figure 3. Feature Engineering 

 

Table 3. Variable Inflation Factor results of Independent variables 

Variables Variance Inflation Factor 

Arithmetic Mean 1.020373 

Skewness 1.078505 

Median Value 1.651945 

Band Power Delta 3.040622 

Hjorth Activity 7.431442 

Mean Teager Energy 8.875246 

Ratio of Band Power Alpha to Beta 9.379438 

RenyiEntropy 23.715299 

Mean Curve Length 33.508472 

Normalized First Difference 34.020277 

Hjorth Mobility 40.316386 

 

3.3 Modeling 

The variables were selected based on the data preprocessing process and fed into three machine-learning 

regression models (Random Forest Regression, Support Vector Regression, and XGBoost Regression). The 

train and test datasets were split randomly into an 8:2 ratio. As model performance varies concerning data, we 

applied three different machine-learning models to compare model performance and feature importance 

results. A Random Forest is a type of machine learning with ensemble learning used for tasks such as 

classification and regression analysis. During the training process, the Random Forest regressor operates by 

generating multiple decision trees and outputs an average prediction value based on the collective outputs of 

these constructed decision trees [26]. Support Vector Machines (SVM) are designed for classification and 

Regression problem-based optimal hyperplanes, convolution of the dot product, and the soft margins [27]. As 

this paper aims to build a regression model, we use Support Vector Regression Machines (SVR), which focus 

on solving regression problems. XGBoost is a tree-boosting algorithm that shows remarkable capability to 
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address sparse data by utilizing a weighted quantile sketch algorithm [28]. SHapley Additive 

exPlanations(SHAP) is an outstanding feature importance analysis method, which is based on game theory and 

local explanations [29]. We analyzed the feature importance of the three machine learning models by using 

the SHAP method. Figure 4 shows the overall process from data preprocessing to evaluation and interpretation 

[30]. 

 

Table 4. EEG Band 

Rhythm Frequency Band (Hz) 

Delta (𝛿) 0-4 

Theta (𝜃) 4-8 

Alpha (𝛼) 8-12 

Sigma (𝜎) 12-15 

Beta 1 (𝛽1) 15-22 

Beta 2 (𝛽2) 22-30 

Gamma 1 (𝛾1) 30-40 

Gamma 2 (𝛾2) 40-49.5 

 

4. Results and discussion 

After training machine-learning models (Random Forest, SVR, XGBoost), the performance of three models 

was evaluated with the metrics MAE and RMSE. Performance results of two predictable variables (AHI score, 

SpO2 score) are shown in Table 5. All three machine-learning models show better performance in predicting 

the AHI score than the SpO2 score. As an aspect of predicting the AHI score, XGBoost Regressor shows the 

best performance and SVR shows the worst performance. Moreover, the performance results of predicting 

SpO2 reveal that the MAE of SVR is the smallest and the MAE of XGBoost is the largest among the three 

machine-learning algorithms. Random Forest has the lowest RMSE results of predicting SpO2 score. Besides 

model performance evaluation, this study analyzed the feature importance of three machine-learning 

algorithms. Feature importance results indicate the level of variables that we have to highly focus on optimal 

pressure prediction. The most notable features are Arithmetic Mean and Mean Teager Energy in AHI score 

prediction and, Ratio of Band Power Alpha to Beta in SpO2 score prediction. 

 

 

Figure 4. Flowchart 
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Table 5. Performance Comparison of Random Forest, SVR, XGBoost 

 

 Model MAE RMSE 

AHI Score Random Forest 0.0583 0.0851 

SVR 0.1309 0.1743 

XGBoost 0.0534 0.0749 

SpO2 Score Random Forest 2.2375 3.2057 

SVR 2.1204 3.2338 

XGBoost 2.4901 3.4682 

 

In our study, we have meticulously selected several EEG-derived features, each holding specific significance 

in understanding sleep-related disturbances. The Hjorth Activity, which captures the variability of the EEG 

signal, becomes particularly relevant as the variability in brain activity tends to increase during awakenings or 

apnea events. Similarly, the Mean Teager Energy, representing the energy of the EEG signal, is pivotal. A high 

energy value is indicative of active brain activity, and its fluctuations during sleep interruptions or apnea events 

can be insightful. The Arithmetic Mean provides insights into the overall activity level of the brain, and its 

pertinence is underscored when considering events like apnea, where the brain’s oxygen supply is momentarily 

compromised. The Median Value, reflecting the central tendency of the EEG signal, can change with 

disturbances in breathing or sleep, making it a valuable metric. Another crucial feature is the Ratio of Band 

Power Alpha to Beta. This ratio, which juxtaposes the resting state-associated alpha band with the active state-

associated beta band, offers a window into the brain’s activity state. Its emphasis in our study stems from its 

ability to reflect the stark differences in brain activity states, especially during transitions between light and 

deep sleep. Lastly, Skewness, which denotes the asymmetry in the EEG signal distribution, becomes 

particularly telling in scenarios where there’s a sudden change in brainwaves due to respiratory disturbances. 

Each of these features, in its unique way, contributes to a more nuanced and comprehensive understanding of 

sleep-related disorders, enhancing the robustness of our predictive models.  

 

 Random Forest SVR XGBoost 

AHI 

Score 

   
SpO2 

Score 

   

 

Figure 5. Feature Importance of Shapley Additive exPlanations Method 

 

By utilizing the predictive capabilities of EEG-derived features for AHI and SpO2, we can better understand 

and evaluate the condition of patients undergoing CPAP treatment. The ability to efficiently predict these key 

indicators provides more immediate insight into the patient’s sleep quality and potential disturbances. This not 

only streamlines the diagnostic process but also ensures a more tailored and effective treatment approach. 
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Consequently, the integration of EEG analysis into the sleep study protocol has the potential to revolutionize 

sleep diagnostics, offering a faster, more precise, and ultimately more effective evaluation for patients with 

sleep-related disorders.  

Given the inherent characteristics of OSA, where it is more prevalent in males, two primary limitations of 

our study include gender imbalance in the dataset and an overall scarcity of data. These factors may impact 

the generalizability and robustness of our findings. As the amount of data is very small, it is hard to build good 

machine-learning models. Moreover, since our final goal is predicting appropriate pressure for patients, we 

can use these results to develop to predict pressure in future work.  

By incorporating EKG data from PSG [31] into a multimodal research approach, especially within the 

constraints of limited time, we expect to maximize the use of diverse biometric signals to overcome data 

shortage and achieve a more holistic understanding of sleep-related disorders. 

 

5. Conclusion 

This paper contributes by confirming the predictive potential of EEG features for AHI and SpO2. Utilizing 

the Shapley Additive exPlanation (SHAP) method, a robust analytical tool, we delved into PSG data from 126 

OSA patients both before and after CPAP treatment. This analysis facilitated the identification of 29 pivotal 

EEG features that have a significant impact on predicting OSA indicators, notably AHI and SpO2. 

The incorporation of machine learning algorithms and the SHAP technique not only augmented the 

efficiency of data processing but also enhanced the precision in evaluating patients’ sleep quality. This method 

has the potential to reduce the time patients need to spend in sleep studies to find the optimal EEG parameters, 

thereby simplifying diagnostic procedures. 

Out of the 29 identified features, six EEG features stood out as particularly significant in predicting AHI 

and SpO2, affirming the potential of integrating EEG analysis into sleep study protocols. Our findings 

underscore the transformative potential this approach holds, paving the way for more nuanced and effective 

evaluations in managing sleep-related disorders. 

In this research, we have laid a foundation that encourages further exploration and integration of machine 

learning to better understand sleep dynamics, promising a future where diagnostics are not only more efficient 

but also patient-friendly, steering towards a landscape that accommodates tailored approaches to handle sleep-

related disorders. 
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