• Title/Summary/Keyword: Prediction Process Prediction Process

Search Result 3,162, Processing Time 0.037 seconds

Prediction of Surface Roughness in Hole Machining Using an Endmill (엔드밀을 활용한 홀 가공 시 표면거칠기 예측에 관한 연구)

  • Chun, Se-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.10
    • /
    • pp.42-47
    • /
    • 2019
  • Helical machining is an efficient method for machining holes using an endmill. In this study, a surface roughness prediction model was constructed for improving the productivity of hole machining. Experiments were conducted to form holes by the helical machining of AL6061-T4 aluminum sheets and correlation analysis was performed to examine the relationships between the variables based on the measured results. Meanwhile, a regression analysis technique was used to construct and evaluate the prediction model. Through these analyses, the parameter which has the greatest influence on the surface roughness when the hole is formed by the helical machining is the feed, followed by the number of revolutions of the endmill. Moreover, for the axial feed of the endmill, it was concluded that the influence of the surface roughness is small compared to the other two parameters but it is a factor worth considering to improve the accuracy when constructing the predictive model.

A Study on Improving the Precision of Quantitative Prediction of Cold Forging Die Life Cycle Through Real Time Forging Load Measurement (실시간 성형하중 계측을 통한 냉간단조 금형수명 정량예측 정밀도 향상 연구)

  • Seo, Y.H.
    • Transactions of Materials Processing
    • /
    • v.30 no.4
    • /
    • pp.172-178
    • /
    • 2021
  • The cold forging process induces material deformation in an enclosed space, generating a very high forging load. Therefore, it is mainly designed as a multi-stage process, and fatigue failure occurs in forging die due to cyclic load. Studies have been conducted previously to quantitatively predict the fatigue limit of cold forging dies, however, there was a limit to field application due to the large error range and the need for expert intervention. To solve this problem, we conducted a study on the introduction of a real-time forging load measurement technology and an automated system for quantitative prediction of die life cycle. As a result, it was possible to reduce the error range of the quantitative prediction of die life cycle to within ±7%, and it became possible to use the die life cycle calculation algorithm into an automated system.

Verifying Execution Prediction Model based on Learning Algorithm for Real-time Monitoring (실시간 감시를 위한 학습기반 수행 예측모델의 검증)

  • Jeong, Yoon-Seok;Kim, Tae-Wan;Chang, Chun-Hyon
    • The KIPS Transactions:PartA
    • /
    • v.11A no.4
    • /
    • pp.243-250
    • /
    • 2004
  • Monitoring is used to see if a real-time system provides a service on time. Generally, monitoring for real-time focuses on investigating the current status of a real-time system. To support a stable performance of a real-time system, it should have not only a function to see the current status of real-time process but also a function to predict executions of real-time processes, however. The legacy prediction model has some limitation to apply it to a real-time monitoring. First, it performs a static prediction after a real-time process finished. Second, it needs a statistical pre-analysis before a prediction. Third, transition probability and data about clustering is not based on the current data. We propose the execution prediction model based on learning algorithm to solve these problems and apply it to real-time monitoring. This model gets rid of unnecessary pre-processing and supports a precise prediction based on current data. In addition, this supports multi-level prediction by a trend analysis of past execution data. Most of all, We designed the model to support dynamic prediction which is performed within a real-time process' execution. The results from some experiments show that the judgment accuracy is greater than 80% if the size of a training set is set to over 10, and, in the case of the multi-level prediction, that the prediction difference of the multi-level prediction is minimized if the number of execution is bigger than the size of a training set. The execution prediction model proposed in this model has some limitation that the model used the most simplest learning algorithm and that it didn't consider the multi-regional space model managing CPU, memory and I/O data. The execution prediction model based on a learning algorithm proposed in this paper is used in some areas related to real-time monitoring and control.

Partially Observed Data in Spatial Autologistic Models with Applications to Area Prediction in the Plane

  • Kim, Young-Won;Park, Eun-Ha;Sun Y. Hwang
    • Journal of the Korean Statistical Society
    • /
    • v.28 no.4
    • /
    • pp.457-468
    • /
    • 1999
  • Autologistic lattice process is used to model binary spatial data. A conditional probability is derived for the incomplete data where the lattice consists of partially yet systematically observed sites. This result, which is interesting in its own right, is in turn applied to area prediction in the plane.

  • PDF

Fault Detection of Cutting Force in Turning Process using RBF/ART-1 (RBF/ART1을 이용한 선삭에서 절삭력을 이상신호 검출)

  • 임상만;이명재;유봉환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.15-19
    • /
    • 1994
  • The application of neural network for fault dection of cutting force in turning was introduced. This monitoring system consist of a RBF predicton model and a ART-1 pattern classifier. RBF prediction model predict a cutting force signal. Prediction error of predictor is used for a input vector of ART-1 pattern classifier. Prediction error could be successfully performed to fault signal monitoring of ART-1 pattern classifier.

  • PDF

Analyzing Customer Management Data by Data Mining: Case Study on Chum Prediction Models for Insurance Company in Korea

  • Cho, Mee-Hye;Park, Eun-Sik
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.4
    • /
    • pp.1007-1018
    • /
    • 2008
  • The purpose of this case study is to demonstrate database-marketing management. First, we explore original variables for insurance customer's data, modify them if necessary, and go through variable selection process before analysis. Then, we develop churn prediction models using logistic regression, neural network and SVM analysis. We also compare these three data mining models in terms of misclassification rate.

  • PDF

Prediction of Settlement Based on Field Monitoring Data under Preloading Improvement with Ramp Loading

  • Woo, Sang-Inn;Yune, Chan-Young;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.436-452
    • /
    • 2008
  • In this study, the settlement prediction method based on field monitoring data under preloading improvement with ramp loading is developed. Settlement behavior can be predicted with field monitored settlement throughout the entire preloading process including ramp loading followed by constant loading. The developed method is verified by comparing its predicted results with results from physical model tests and field monitoring data.

  • PDF

Prediction of Domain Action Using a Neural Network (신경망을 이용한 영역 행위 예측)

  • Lee, Hyun-Jung;Seo, Jung-Yun;Kim, Hark-Soo
    • Korean Journal of Cognitive Science
    • /
    • v.18 no.2
    • /
    • pp.179-191
    • /
    • 2007
  • In a goal-oriented dialogue, spoken' intentions can be represented by domain actions that consist of pairs of a speech art and a concept sequence. The domain action prediction of user's utterance is useful to correct some errors that occur in a speech recognition process, and the domain action prediction of system's utterance is useful to generate flexible responses. In this paper, we propose a model to predict a domain action of the next utterance using a neural network. The proposed model predicts the next domain action by using a dialogue history vector and a current domain action as inputs of the neural network. In the experiment, the proposed model showed the precision of 80.02% in speech act prediction and the precision of 82.09% in concept sequence prediction.

  • PDF

Sequential prediction of TBM penetration rate using a gradient boosted regression tree during tunneling

  • Lee, Hang-Lo;Song, Ki-Il;Qi, Chongchong;Kim, Kyoung-Yul
    • Geomechanics and Engineering
    • /
    • v.29 no.5
    • /
    • pp.523-533
    • /
    • 2022
  • Several prediction model of penetration rate (PR) of tunnel boring machines (TBMs) have been focused on applying to design stage. In construction stage, however, the expected PR and its trends are changed during tunneling owing to TBM excavation skills and the gap between the investigated and actual geological conditions. Monitoring the PR during tunneling is crucial to rescheduling the excavation plan in real-time. This study proposes a sequential prediction method applicable in the construction stage. Geological and TBM operating data are collected from Gunpo cable tunnel in Korea, and preprocessed through normalization and augmentation. The results show that the sequential prediction for 1 ring unit prediction distance (UPD) is R2≥0.79; whereas, a one-step prediction is R2≤0.30. In modeling algorithm, a gradient boosted regression tree (GBRT) outperformed a least square-based linear regression in sequential prediction method. For practical use, a simple equation between the R2 and UPD is proposed. When UPD increases R2 decreases exponentially; In particular, UPD at R2=0.60 is calculated as 28 rings using the equation. Such a time interval will provide enough time for decision-making. Evidently, the UPD can be adjusted depending on other project and the R2 value targeted by an operator. Therefore, a calculation process for the equation between the R2 and UPD is addressed.