• 제목/요약/키워드: Prediction Control

검색결과 2,231건 처리시간 0.04초

시간지연이 있는 대규모 이산시간 시스템의 상태궤환 최적제어 (State feedback optimal control of large-scale discrete-time systems with time-delays)

  • 김경연;전기준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1988년도 한국자동제어학술회의논문집(국내학술편); 한국전력공사연수원, 서울; 21-22 Oct. 1988
    • /
    • pp.219-224
    • /
    • 1988
  • A decentralised computational procedure is proposed for the optimal feedback gain matrix of large-scale discrete-time systems with time-delays. The constant feedback gain matrix is computed from the optimal state and input trajectries obtained hierarchically by the interaction prediction method. All the calculation in this approach are done off-line. The resulting gains are optimal for all the initial conditions. The interaction prediction method is applied to time-delay large-scale systems with general structures by extending the dimensions of coupling matices. A numerical exampie illustrates the algorithm.

  • PDF

광디스크 드라이브를 위한 강인 제어기 설계 (Robust Servo System for Optical Disk Drive Systems)

  • 박범호;정정주;백종식
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제54권1호
    • /
    • pp.1-10
    • /
    • 2005
  • This paper proposes a new and simple input prediction method for robust servo system. A robust tracking control system for optical disk drives was proposed recently based on both Coprime Factorization (CF) and Zero Phase Error Tracking (ZPET) control. The CF control system can be designed simply and systematically. Moreover, this system has not only stability but also robustness to parameter uncertainties and disturbance rejection capability. Since optical disk tracking servo system can detect only tracking error, it was proposed that the reference input signal for ZPET could be estimated from tracking errors. In this paper, we propose a new control structure for the ZPET controller. It requires less memory than the previously proposed method for the reference signal generation. Numerical simulation results show that the proposed method is effective.

GOV구조를 이용한 MPEG-4 비트율 제어기법 (MPEG-4 Rate Control Using GOV Structure)

  • 박지호;김종호;정제창
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅳ
    • /
    • pp.2056-2059
    • /
    • 2003
  • The rate control is very important to solve the difficulties arising from bit-rate on transmission through channel and to improve video quality. It is very important to point out that the amount of output bit obtained the encoding process using rate controller brings many problems on the transmission of channels and furthermore output bitstream decoded affects directly on the visual quality of displayed subject. In this paper, the effective rate control algorithm by rate-distortion modeling using MPEG-4 encoder is proposed. The proposed rate control has applied different weighting by VOP prediction type and even in the same VOP prediction type, the predicted reference allocates more bit. Through these bit allocation the minimization of distortion can be achieved preventing propagation of quantization error The amount of saved bitstream obtained by the proposed algorithm in this thesis is allocated to I-VOP using region of interest(ROI) selective enhancement on the next GOV encoding process and this process brought the improvement of visual quality.

  • PDF

효과적인 예측 기반 비디오 비트율 제어 기법 (Efficient Prediction-based Video Rate Control Technique)

  • 김진열;김영로;고성제
    • 한국통신학회논문지
    • /
    • 제24권10A호
    • /
    • pp.1555-1562
    • /
    • 1999
  • 제한된 전송속도와 버퍼크기에 따라 효과적으로 비디오 전송을 하기 위하여 비디오 비트율 제어 기법들이 제안되어 왔다. 그러나 기존의 제안된 기법들에서는 비트율을 제어하는 부호 파라미터, 양자화 크기 등이 일단 영상이 부호화된 다음 얻어진 정보를 바탕으로 조정된다. 그러므로 현재 부호화하는 프레임의 복잡도에 적절하게 비트율을 제어하지 못하거나 지연이 발생하는 단점이 있다. 본 논문에서는 DCT를 기반으로 한 활성도를 이용하여 비트율 예측하는 기법을 제안하였다. 제안된 기법은 비디오 비트율 제어에 효과적으로 적용할 수 있다. 실험을 통하여 제안한 예측기반 비트율 제어 기법이 장면변환 및 갑자기 비트량이 많이 발생하는 프레임에도 잘 적용될 수 있으며, TM5 기법보다도 향상된 PSNR과 비트율 제어 성능을 보였다.

  • PDF

An intelligent semi-active isolation system based on ground motion characteristic prediction

  • Lin, Tzu-Kang;Lu, Lyan-Ywan;Hsiao, Chia-En;Lee, Dong-You
    • Earthquakes and Structures
    • /
    • 제22권1호
    • /
    • pp.53-64
    • /
    • 2022
  • This study proposes an intelligent semi-active isolation system combining a variable-stiffness control device and ground motion characteristic prediction. To determine the optimal control parameter in real-time, a genetic algorithm (GA)-fuzzy control law was developed in this study. Data on various types of ground motions were collected, and the ground motion characteristics were quantified to derive a near-fault (NF) characteristic ratio by employing an on-site earthquake early warning system. On the basis of the peak ground acceleration (PGA) and the derived NF ratio, a fuzzy inference system (FIS) was developed. The control parameters were optimized using a GA. To support continuity under near-fault and far-field ground motions, the optimal control parameter was linked with the predicted PGA and NF ratio through the FIS. The GA-fuzzy law was then compared with other control laws to verify its effectiveness. The results revealed that the GA-fuzzy control law could reliably predict different ground motion characteristics for real-time control because of the high sensitivity of its control parameter to the ground motion characteristics. Even under near-fault and far-field ground motions, the GA-fuzzy control law outperformed the FPEEA control law in terms of controlling the isolation layer displacement and the superstructure acceleration.

An Application of GP-based Prediction Model to Sunspots

  • Yano, Hiroshi;Yoshihara, Ikuo;Numata, Makoto;Aoyama, Tomoo;Yasunaga, Moritoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.523-523
    • /
    • 2000
  • We have developed a method to build time series prediction models by Genetic Programming (GP). Our proposed CP includes two new techniques. One is the parameter optimization algorithm, and the other is the new mutation operator. In this paper, the sunspot prediction experiment by our proposed CP was performed. The sunspot prediction is good benchmark, because many researchers have predicted them with various kinds of models. We make three experiments. The first is to compare our proposed method with the conventional methods. The second is to investigate about the relation between a model-building period and prediction precision. In the first and the second experiments, the long-term data of annual sunspots are used. The third is to try the prediction using monthly sunspots. The annual sunspots are a mean of the monthly sunspots. The behaviors of the monthly sunspot cycles in tile annual sunspot data become invisible. In the long-term data of the monthly sunspots, the behavior appears and is complicated. We estimate that the monthly sunspot prediction is more difficult than the annual sunspot prediction. The usefulness of our method in time series prediction is verified by these experiments.

  • PDF

현재 기상 정보의 이동 평균을 사용한 태양광 발전량 예측 (Use of the Moving Average of the Current Weather Data for the Solar Power Generation Amount Prediction)

  • 이현진
    • 한국멀티미디어학회논문지
    • /
    • 제19권8호
    • /
    • pp.1530-1537
    • /
    • 2016
  • Recently, solar power generation shows the significant growth in the renewable energy field. Using the short-term prediction, it is possible to control the electric power demand and the power generation plan of the auxiliary device. However, a short-term prediction can be used when you know the weather forecast. If it is not possible to use the weather forecast information because of disconnection of network at the island and the mountains or for security reasons, the accuracy of prediction is not good. Therefore, in this paper, we proposed a system capable of short-term prediction of solar power generation amount by using only the weather information that has been collected by oneself. We used temperature, humidity and insolation as weather information. We have applied a moving average to each information because they had a characteristic of time series. It was composed of min, max and average of each information, differences of mutual information and gradient of it. An artificial neural network, SVM and RBF Network model was used for the prediction algorithm and they were combined by Ensemble method. The results of this suggest that using a moving average during pre-processing and ensemble prediction models will maximize prediction accuracy.

얼간 사상 압연중 압하력 예측 모델 개발 및 적용 (The development and application of on-line model for the prediction of roll force in hot strip rolling)

  • 이중형;;곽우진;황상무
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 제5회 압연심포지엄 신 시장 개척을 위한 압연기술
    • /
    • pp.175-183
    • /
    • 2004
  • In hot strip rolling, a capability for precisely predicting roll force is crucial for sound process control. In the past, on-line prediction models have been developed mostly on the basis of Orowan's theory and its variation. However, the range of process conditions in which desired prediction accuracy could be achieved was rather limited, mainly due to many simplifying assumptions inherent to Orowan's theory. As far as the prediction accuracy is concerned, a rigorously formulated finite element(FE) process model is perhaps the best choice. However, a FE process model in general requires a large CPU time, rendering itself inadequate for on-line purpose. In this report, we present a FE-based on-line prediction model applicable to precision process control in a finishing mill(FM). Described was an integrated FE process model capable of revealing the detailed aspects of the thermo-mechanical behavior of the roll-strip system. Using the FE process model, a series of process simulation was conducted to investigate the effect of diverse process variables on some selected non-dimensional parameters characterizing the thermo-mechanical behavior of the strip. Then, it was shown that an on-line model for the prediction of roll force could be derived on the basis of these parameters. The prediction accuracy of the proposed model was examined through comparison with measurements from the hot strip mill.

  • PDF

머신러닝 기반의 온실 제어를 위한 예측모델 개발 (Development of Prediction Model for Greenhouse Control based on Machine Learning)

  • 김상엽;박경섭;이상민;허병문;류근호
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권4호
    • /
    • pp.749-756
    • /
    • 2018
  • 본 연구는 머신러닝 기법을 이용한 온실 제어를 위한 예측모델을 개발하는 것이 목적이다. 시설원예연구소의 실험온실에서 측정된 데이터(2016년)를 사용하여 예측모델을 개발하였다. 모델의 예측성능 향상과 데이터의 신뢰성 확보를 위해 상관관계분석을 통해 데이터의 축소를 수행하였다. 데이터는 계절별 특성을 고려하여 봄, 여름, 가을 및 겨울로 나누어 구축하였다. 머신러닝 기반의 예측모델로 인공신경망, 순환신경망 및 다중회귀모델을 구축하고 비교분석을 통해 타당성을 평가하였다. 분석 결과에서, Selected dataset에서는 인공신경망 모델이 Full dataset에서는 다중회귀모델이 좋은 예측성능을 보였다.

DTN에서 노드의 속성 정보 변화율과 가중치를 이용한 이동 예측 기법 (A Prediction Method using WRC(Weighted Rate Control Algorithm) in DTN)

  • 전일규;오영준;이강환
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2015년도 춘계학술대회
    • /
    • pp.113-115
    • /
    • 2015
  • 본 논문에서는 Delay Tolerant Networks(DTNs)에서 노드의 속성 정보 변화율을 이용한 이동 예측 알고리즘인 WRC(Weighted Rate Control)알고리즘을 제안한다. 기존 DTN에서 예측기반 라우팅 기법은 노드의 이전 속성 정보를 이용하여 목적 노드와 연결성이 높은 노드를 중계 노드로 선정하여 통신한다. 따라서 이동 노드는 유동적이므로 노드의 이후 속성 정보를 반영하지 않는 예측 기법은 신뢰성이 낮아진다. 본 논문에서는 이전 속성 정보로부터 이후 속성정보까지의 시간에 따른 변화율과 속성의 가중치 정보를 이용하여 노드의 이동 경로를 예측하는 WRC알고리즘을 제안한다. 본 논문에서 제안하는 알고리즘은 노드의 속성 정보 중 노드의 속도와 방향성을 근사한 후, 변화율을 분석하고 이로부터 제안된 가중치를 이용하여 노드의 이동 경로를 예측하는 알고리즘이다. 주어진 모의실험 환경에서 노드의 이동 경로 예측을 통해 중계 노드를 선정하여 라우팅 함으로써 네트워크 오버헤드와 전송 지연 시간이 감소함을 보여주고 있다.

  • PDF