• 제목/요약/키워드: Prediction Accuracy

검색결과 3,787건 처리시간 0.031초

시프트 시그모이드 분류함수를 가진 로지스틱 회귀를 이용한 신입생 중도탈락 예측모델 연구 (A Study of Freshman Dropout Prediction Model Using Logistic Regression with Shift-Sigmoid Classification Function)

  • 김동형
    • 디지털산업정보학회논문지
    • /
    • 제19권4호
    • /
    • pp.137-146
    • /
    • 2023
  • The dropout of university freshmen is a very important issue in the financial problems of universities. Moreover, the dropout rate is one of the important indicators among the external evaluation items of universities. Therefore, universities need to predict dropout students in advance and apply various dropout prevention programs targeting them. This paper proposes a method to predict such dropout students in advance. This paper is about a method for predicting dropout students. It proposes a method to select dropouts by applying logistic regression using a shift sigmoid classification function using only quantitative data from the first semester of the first year, which most universities have. It is based on logistic regression and can select the number of prediction subjects and prediction accuracy by using the shift sigmoid function as an classification function. As a result of the experiment, when the proposed algorithm was applied, the number of predicted dropout subjects varied from 100% to 20% compared to the actual number of dropout subjects, and it was found to have a prediction accuracy of 75% to 98%.

LSTM 딥러닝 신경망 모델을 이용한 풍력발전단지 풍속 오차에 따른 출력 예측 민감도 분석 (Analysis of wind farm power prediction sensitivity for wind speed error using LSTM deep learning model)

  • 강민상;손은국;이진재;강승진
    • 풍력에너지저널
    • /
    • 제15권2호
    • /
    • pp.10-22
    • /
    • 2024
  • This research is a comprehensive analysis of wind power prediction sensitivity using a Long Short-Term Memory (LSTM) deep learning neural network model, accounting for the inherent uncertainties in wind speed estimation. Utilizing a year's worth of operational data from an operational wind farm, the study forecasts the power output of both individual wind turbines and the farm collectively. Predictions were made daily at intervals of 10 minutes and 1 hour over a span of three months. The model's forecast accuracy was evaluated by comparing the root mean square error (RMSE), normalized RMSE (NRMSE), and correlation coefficients with actual power output data. Moreover, the research investigated how inaccuracies in wind speed inputs affect the power prediction sensitivity of the model. By simulating wind speed errors within a normal distribution range of 1% to 15%, the study analyzed their influence on the accuracy of power predictions. This investigation provided insights into the required wind speed prediction error rate to achieve an 8% power prediction error threshold, meeting the incentive standards for forecasting systems in renewable energy generation.

도로교통소음에 관한 기존 예측식 평가 및 검증에 관한 연구 (A Study on the Evaluation and Verification of an existing Prediction Model on the Road Traffic Noise)

  • 이내현;조일형;박영민;선우영
    • 환경영향평가
    • /
    • 제15권2호
    • /
    • pp.93-100
    • /
    • 2006
  • In general, the verification to prediction formula in a national road and the main street of a town has been used recklessly in Korea. Therefore we investigated the validity of an existing prediction formula (NIER(87, 99), TR-Noise, KLC(2002)) with correction relationship which was based on both the prediction formular from apartment complex in the field and height 1.5m from the surface level. On the results of measuring the noise level form an isolated distance, the noise level showed that it was 4.5~5.5dB(A) by reason of becoming 2 folder far from a source. From the distribution of noise level measured by the apartment floors, the measurement point (1st floor) was 58.7~71.4dB(A) at its lowest level and the middle floors (3, 5, 7 and 10) were the highest distribution of noise level. From the analysis results on the application validity to an existing prediction formular (NIER(87, 99), TR-Noise, KLC(2002)) in the height 1.5m, the correction coefficients were 0.95~0.96 and the measured values were reasonably close to the predicted values, indicating the validity and adequacy of the predicted models. KLC(2002) model was found accurate within 3dB(A) with 36 data out of the total 42 data, showing the most accuracy among the predict models. However, the developed models have to improve the accuracy with a various of factors.

통계적 및 인공지능 모형 기반 태양광 발전량 예측모델 비교 및 재생에너지 발전량 예측제도 정산금 분석 (Comparison of solar power prediction model based on statistical and artificial intelligence model and analysis of revenue for forecasting policy)

  • 이정인;박완기;이일우;김상하
    • 전기전자학회논문지
    • /
    • 제26권3호
    • /
    • pp.355-363
    • /
    • 2022
  • 우리나라는 2050년 탄소중립을 목표로 신재생에너지 중심으로 에너지 공급원을 전환하고 확대하는 계획을 추진 중이다. 신재생에너지의 간헐적 특성으로 에너지 공급이 불안정성이 커짐에 따라 정확한 신재생에너지 발전량 예측의 중요성이 함께 커지고 있다. 이에 따라 정부는 신재생에너지를 집합화하여 관리하기 위한 소규모 전력중개시장을 개설하였고, 재생에너지 발전량 예측제도를 도입하여 예측정확도에 따라 정산금을 지급하는 제도를 시행 중이다. 본 논문에서는 우리나라 신재생에너지 전원의 대부분을 차지하는 태양광 발전에 대하여 통계적 및 인공지능 모형을 이용하여 예측모델을 구현하였으며, 각 모형의 예측정확도 결과를 비교 분석하였다. 비교 모델 중에서 CNN-LSTM(Convolutional Long Short-Term Memory Neural Networks) 모형이 가장 높은 성능을 가짐을 확인하였다. 예측정확도에 따른 예측제도 정산금 수익을 추정해보았고, 예측보유 기술 수준에 따라 수익 편차가 24% 정도 커질 수 있음을 확인하였다.

온라인 언급이 기업 성과에 미치는 영향 분석 : 뉴스 감성분석을 통한 기업별 주가 예측 (Influence analysis of Internet buzz to corporate performance : Individual stock price prediction using sentiment analysis of online news)

  • 정지선;김동성;김종우
    • 지능정보연구
    • /
    • 제21권4호
    • /
    • pp.37-51
    • /
    • 2015
  • 인터넷 기술의 발전과 인터넷 상 데이터의 급속한 증가로 인해 데이터의 활용 목적에 적합한 분석방안 연구들이 활발히 진행되고 있다. 최근에는 텍스트 마이닝 기법의 활용에 대한 연구들이 이루어지고 있으며, 특히 문서 내 텍스트를 기반으로 문장이나 어휘의 긍정, 부정과 같은 극성 분포에 따라 의견을 스코어링(scoring)하는 감성분석과 관련된 연구들도 다수 이루어지고 있다. 이러한 연구의 연장선상에서, 본 연구는 인터넷 상의 특정 기업에 대한 뉴스 데이터를 수집하여 이들의 감성분석을 실시함으로써 주가의 등락에 대한 예측을 시도하였다. 개별 기업의 뉴스 정보는 해당 기업의 주가에 영향을 미치는 요인으로, 적절한 데이터 분석을 통해 주가 변동 예측에 유용하게 활용될 수 있을 것으로 기대된다. 따라서 본 연구에서는 개별 기업의 온라인 뉴스 데이터에 대한 감성분석을 바탕으로 개별 기업의 주가 변화 예측을 꾀하였다. 이를 위해, KOSPI200의 상위 종목들을 분석 대상으로 선정하여 국내 대표적 검색 포털 서비스인 네이버에서 약 2년간 발생된 개별 기업의 뉴스 데이터를 수집 분석하였다. 기업별 경영 활동 영역에 따라 기업 온라인 뉴스에 나타나는 어휘의 상이함을 고려하여 각 개별 기업의 어휘사전을 구축하여 분석에 활용함으로써 감성분석의 성능 향상을 도모하였다. 분석결과, 기업별 일간 주가 등락여부에 대한 예측 정확도는 상이했으며 평균적으로 약 56%의 예측률을 보였다. 산업 구분에 따른 주가 예측 정확도를 통하여 '에너지/화학', '생활소비재', '경기소비재'의 산업군이 상대적으로 높은 주가 예측 정확도를 보임을 확인하였으며, '정보기술'과 '조선/운송' 산업군은 주가 예측 정확도가 낮은 것으로 확인되었다. 본 논문은 온라인 뉴스 정보를 활용한 기업의 어휘사전 구축을 통해 개별 기업의 주가 등락 예측에 대한 분석을 수행하였으며, 향후 감성사전 구축 시 불필요한 어휘가 추가되는 문제점을 보완한 연구 수행을 통하여 주가 예측 정확도를 높이는 방안을 모색할 수 있을 것이다.

Non-stationary VBR 트래픽을 위한 동적 데이타 크기 예측 알고리즘 (On-line Prediction Algorithm for Non-stationary VBR Traffic)

  • 강성주;원유집;성병찬
    • 한국정보과학회논문지:정보통신
    • /
    • 제34권3호
    • /
    • pp.156-167
    • /
    • 2007
  • 본 논문에서는 VBR(Variable-Bit-Rate) 트래픽의 비선형적이고 버스티한 특성을 모델화 한 GOP ARIMA(ARIMA for Group Of Pictures) 모델을 칼만 필터 알고리즘을 이용하여 실시간으로 예측하는 기법을 제안한다. 칼만 필터를 이용한 예측 기법은 GOP ARIMA의 상태공간 모델링 과정과 향후 N초 간의 트래픽을 예측하는 과정으로 구성된다. 실험을 위해 GOP의 크기가 각각 15인 세 가지 종류의 MPEG VBR 트래픽(뉴스, 드라마, 스포츠)을 제작하였고, 칼만 필터를 이용한 세 가지 종류의 트래픽의 예측 결과를 선형 예측법과 이중 지수 평활법을 이용해 예측한 결과와 비교해 예측 성능이 상대적으로 우수함을 확인할 수 있었다. 또한 예측값에 신뢰 구간을 설정하는 신뢰 구간 분석법을 통해 트래픽 관점에서 장면 변화를 예측하는 방법을 제시하였다. 본 논문의 칼만 필터 기반의 예측 알고리즘은 MPEG 기반 VBR 트래픽을 비롯한 기타 인터넷 트래픽을 실시간으로 예측하는 방법과 이를 이용해 인터넷 서버의 설계 및 자원 할당 정책 등을 위한 트래픽 엔지니어링 연구에 기여할 수 있을 것이다.

Prediction of coal and gas outburst risk at driving working face based on Bayes discriminant analysis model

  • Chen, Liang;Yu, Liang;Ou, Jianchun;Zhou, Yinbo;Fu, Jiangwei;Wang, Fei
    • Earthquakes and Structures
    • /
    • 제18권1호
    • /
    • pp.73-82
    • /
    • 2020
  • With the coal mining depth increasing, both stress and gas pressure rapidly enhance, causing coal and gas outburst risk to become more complex and severe. The conventional method for prediction of coal and gas outburst adopts one prediction index and corresponding critical value to forecast and cannot reflect all the factors impacting coal and gas outburst, thus it is characteristic of false and missing forecasts and poor accuracy. For the reason, based on analyses of both the prediction indicators and the factors impacting coal and gas outburst at the test site, this work carefully selected 6 prediction indicators such as the index of gas desorption from drill cuttings Δh2, the amount of drill cuttings S, gas content W, the gas initial diffusion velocity index ΔP, the intensity of electromagnetic radiation E and its number of pulse N, constructed the Bayes discriminant analysis (BDA) index system, studied the BDA-based multi-index comprehensive model for forecast of coal and gas outburst risk, and used the established discriminant model to conduct coal and gas outburst prediction. Results showed that the BDA - based multi-index comprehensive model for prediction of coal and gas outburst has an 100% of prediction accuracy, without wrong and omitted predictions, can also accurately forecast the outburst risk even for the low indicators outburst. The prediction method set up by this study has a broad application prospect in the prediction of coal and gas outburst risk.

이해상충과 애널리스트 예측 (Conflict of Interests and Analysts' Forecast)

  • 박창균;연태훈
    • KDI Journal of Economic Policy
    • /
    • 제31권1호
    • /
    • pp.239-276
    • /
    • 2009
  • 본 연구에서는 주식시장에서 정보 생산자로서 중요한 기능을 수행하는 '애널리스트'의 이익 예측치 편의와 정확도가 증권사와 평가 대상 기업의 동일인 소유 여부에 의하여 영향을 받는지를 점검하였다. 소유구조에 기반한 증권사와 평가 대상 기업 간의 특수관계에 의하여 평가자의 행태가 달라지고 그로 인하여 불특정 다수의 투자자에게 부정적 영향이 초래되는 경우 적절한 규제조치가 필요할 것이라는 측면에서 제기된 문제의 실천적 의미를 찾을 수 있다. 물론 평판효과(reputation effect)가 중요한 역할을 하는 증권업과 애널리스트 시장에서 시장규율(market discipline)이 원활히 작동한다면 특수관계로 인해 왜곡된 정보를 제공할 유인이 사라질 것이며 별도의 규제가 필요하지는 않을 것이다. 분석 결과에 의하면, 특수관계가 존재할 경우 양의 예측편의가 발생하는 빈도가 높은 것은 사실이나, 예측편의의 크기를 포함한 종합적 상관관계를 고려할 경우 증권사와 평가 대상 기업 간의 특수관계가 유의한 예측편의를 발생시키는 것으로 보기는 어려우며, 정확도 또한 의미있는 차이를 보이는 것으로 결론짓기는 어려운 것으로 나타났다. 이는 적어도 현재까지는 증권사가 소유구조로 인하여 왜곡된 정보를 생산하려는 유인보다 정확한 정보를 제공한다는 평판을 지키려는 유인이 더욱 크게 작용한 결과 관측되는 현상으로 해석될 수 있다.

  • PDF

적응 가능한 분기 히스토리 길이를 사용하는 분기 예측 메커니즘 (A Branch Prediction Mechanism Using Adaptive Branch History Length)

  • 조영일
    • 전자공학회논문지CI
    • /
    • 제44권1호
    • /
    • pp.33-40
    • /
    • 2007
  • 최근, 프로세서의 파이프라인 깊이와 이슈 폭이 점차로 증가함에 따라 분기예측 실패에 의한 페널티가 더욱 증가하고 있다. 분기예측 실패는 프로세서 성능을 개선하는데 가장 심각한 성능 장애 요소이다. 따라서 좀 더 정확한 분기 예측기는 최신 프로세서들에게 필수적이다. 많은 분기예측기들은 분기 명령의 주소와 고정 분기히스토리 길이로 예측을 수행한다. 최적의 분기히스토리 길이는 프로그램과 프로그램에 있는 분기 명령에 따라 달라지므로 고정 분기히스토리를 사용하는 예측기들은 잠재적 성능을 얻을 수 없다. 본 논문에서는 5개 뱅크로부터의 예측 중 가장 높은 예측정확도를 갖는 뱅크로 예측하는 가변 길이 분기 히스토리를 사용하는 분기예측 메커니즘을 제안한다. 뱅크 0는 분기 명령의 주소만을 사용하여 인덱스 하는 bimodal 예측기이고, 나머지 뱅크는 다른 히스토리 길이와 분기 명령 PC로 인덱스 하는 예측기이다. 실험결과 제안한 메커니즘은 12, 13의 고정 히스토리 길이를 사용하는 gshare보다 최대 6.34% 예측 정확도를 개선시켰고, 각 벤치마크에 대한 최적의 히스토리 길이를 사용하는 gshare와 비교해도 최대 2.3% 개선시켰다.

중장기 유량예측 향상을 위한 국내 기후정보의 이용 (Use of Climate Information for Improving Extended Streamflow Prediction in Korea)

  • 이재경;김영오;정대일
    • 한국수자원학회논문집
    • /
    • 제39권9호
    • /
    • pp.755-766
    • /
    • 2006
  • 중장기 기후예보는 기후역학모형의 비약적인 발전과 ENSO등의 기후현상에 대한 규명으로, 전세계적으로 정확성이 크게 향상되고 있어 중장기 유량예측의 중요한 실마리가 되고 있다. 본 연구에서는 우선 중장기 유량예측 향상을 위하여 국내에서 사용 가능한 기후정보, 즉 월간산업기상정보와 GDAPS(Global Data Assimilation and Prediction System)를 조사하고 그 정확성을 평가하였다. 월간산업기상정보와 GDAPS의 순별 예보에서 모두 초보예측보다 정확하였고 특히 갈수기보다는 홍수기에 정확성이 더 높게 나와 이 기간에는 기후예보로서 유효함을 확인하였다. 다음으로 기후예보를 이용하여 충주댐 유역에 대하여 유량예측을 수행하였다. 월간산업기상정보에서는 전체 시나리오, 교집합 시나리오, 합집합 시나리오로 나누어 유량예측에 적용하였다. 세 경우 모두 초보예측보다 평균예측점수가 높아 예측으로서 유효하였으며, 특히 홍수기에 교집합 및 합집합 시나리오의 평균예측점수가 전체 시나리오보다 높게 나타났다. GDAPS를 이용한 순별 유량예측의 경우에도 역시 갈수기보다 홍소기에 더 높은 정확성이 나타났다. 따라서 본 연구에서는 홍수기에 보다 정확한 기후예보를 사용하여 기상학적 불확실성을 줄인다면 월 유량예측의 정확성을 향상시킬 수 있음을 증명하였다.