In a wafer fabrication factory, the completion time of an order is affected by many factors related to the specifics of the order and the status of the system, so is difficult to predict precisely. The level of influence of each factor on the order completion time may also depend on the production system characteristics, such as the rules for releasing and dispatching. This paper presents a method to identify those factors that significantly impact upon the order completion time under various combinations of scheduling rules. Computer simulations and statistical analyses were used to develop effective due date assignment models for improving the due date related performances. The first step of this research was to select the releasing and dispatching rules from those that were cited so frequently in related wafer fabrication factory researches. Simulation and statistical analyses were combined to identify the critical factors for predicting order completion time under various combinations of scheduling rules. In each combination of scheduling rules, two efficient due date assignment models were established by using the regression method for accurately predicting the order due date. Two due date assignment models, called the significant factor prediction model (SFM) and the key factor prediction model (KFM), are proposed to empirically compare the due date assignment rules widely used in practice. The simulation results indicate that SFM and KFM are superior to the other due date assignment rules. The releasing rule, dispatching rule and due date assignment rule have significant impacts on the due date related performances, with larger improvements coming from due date assignment and dispatching rules than from releasing rules.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.20
no.4
/
pp.46-56
/
2021
Predicting the incident clearance time is important for eliminating the high transportation costs and congestion from non-repetitive congestion caused by incidents. In this study, the factors influencing the clearance time suitable for domestic road conditions were analyzed, using a training dataset for predicting the incident clearance time using artificial neural networks. In a previous study, the under-prediction problem for high incident clearance time was used. In the present study, over-sampling training data applied using the SMOGN technique was obtained and applied to the model as a solution. As a result, the DNN model applying the SMOGN technique could compensate for the limitations of the previously developed prediction model by predicting the clearance time with the highest accuracy among the models developed in the research process with MAE = 18.3 minutes.
This study aims to create a model for predicting the number of extinguishment manpower to put out forest fires by taking into account the climate, the situation, and the extent of the damage at the time of the forest fires. Past research has been approached to determine the cause of the forest fire or to predict the occurrence of a forest fire. How to deal with forest fires is also a very important part of how to deal with them, so predicting the number of extinguishment manpower is important. Therefore predicting the number of extinguishment manpower that have been put into the forest fire is something that can be presented as a new perspective. This study presents a model for predicting the number of extinguishment manpower inputs considering the scale of the damage with forest fire on a scale bigger than 0.1 ha as data based on the forest fire annual report(Korea Forest Service; KFS) from 2015 to 2018 using the moderated multiple regression analysis. As a result, weather factors and extinguished time considering the damage show that affect forest fire extinguishment manpower.
Ji-Yeon Seo;Su-Kyung Cho;Yeon-Woong Jung;Hyung-Jin Kim;Jae Ho, Cho;Jae-Youl Chun
International conference on construction engineering and project management
/
2013.01a
/
pp.304-307
/
2013
Various programs have been developed to predict the energy consumption of a building as a result of recent increased social interest in the environmental friendliness of construction as measured by energy efficiency. The goal of environmental-friendliness, which is achieved by predicting the energy consumption of a building, can be realized in the design stage by applying a variety of technologies, planning factors and planning systems. However, most energy analyzing engines are only suitable for use in the advanced stages of design because of the large amount of design information that must be entered. Thus, because the simulation programs currently used are not suitable for use in the early stages of design, this study suggests a prediction logic that provides an overview of the energy consumption of a building according to its size, scope, and purpose by analyzing statistics collected by government agencies.
Solmi Kim;Dong-Hyeop Kim;Sang-Woo Kim;Soo-Yong Lee
Composites Research
/
v.37
no.4
/
pp.275-285
/
2024
This paper presents research trends in predicting the deformation of carbon fiber reinforced thermoplastic (CFRTP) composites during thermoforming. Various thermoforming variables that must be considered during the CFRTP thermoforming stages are investigated, and factors influencing process-induced deformation are analyzed. Key material behavior models, such as crystallinity and viscoelastic, which are important for predicting thermoforming deformation, are also examined. Additionally, trends in predicting CFRTP thermoforming deformation using finite element analysis with material behavior models and machine learning techniques are analyzed. In summary, more precise prediction techniques for thermoforming deformation can be developed by associating them with material behavior models and considering thermoforming variables.
This study was conducted to determine the time and methods of predicting tobacco yield. by analysis of climatic factors in the period of tobacco season during 8 years from 1979 to 1986 at the Daegu district, south eastern part of Korean peninsular. The results obtained are summarised as follows: 1. Climatic factors of each month which have influence on tobacco yield were the amount of rainfall in May and sunshine hours in July. Among climatic factors at tobacco growth stages, the precipitation yield. But these meteorological factors had different effect on variety. 2. Between tobacco yields and climatic factors by even values of each month, tobacco yield was estimated by equations, flue cured tobacco :Y=190.6-5.230X1+ 0.474$\times$2 + 0.142X3(Xl : Minimum temperature of April, X2: Precipitation during May, X3:Sunshine duration on July), air cured tobacco : Y= 195.3-0.447Xl + 0.363$\times$2 + 0.l12$\times$3(Xl :Maximum temperature of May, X2:Precipitation during May. X3: Sunshine duration on July). While between tobacco yield and climatic factors at different growth stage, predicting equation of yield could be derived, flue cured tobacco : Y=205.8+0.510Xl +0.289$\times$2 + 0.305$\times$3 (Xl :Average temperature during the early growth stage, X2 :Precipitation during the early and maximum growth stage, X3 : Sunshine hours during the leaf and tips maturing stage), air cured tobacco Y=194.T-0.498Xl 10.615$\times$2+0.121$\times$3(Xl ;Maximum temperature during the transplanting time, X2 : Precipitation during the maximum growth stage, X3 : Sunshine hours during the leaf and tips maturing stage).
Purpose: To investigate changes in Quality of life (QOL) and related factors in patients with thyroid cancer undergoing Radioactive Iodine remnant ablation (RAI). Methods: Data were collected longitudinally 3 times for 6 months (2 weeks post-surgery, post RAI, 3 months post RAI) in a hospital located in Seoul. Questionnaires were used to measure levels of physical symptoms, anxiety, depression, and QOL. Ninety-eight patients with thyroid cancer who had RAI were included in the analysis. Data were analyzed using SPSS (18.0). Results: Findings for the three data collection times respectfully were: mean scores for physical symptoms, 0.53, 1.21 and 0.62, patients with depression, 47%, 36.7% and 37.7%, patients with anxiety, 18.4 %, 19.4% and 20.4%, mean scores for QOL, 7.06, 7.01 and 7.28. QOL score was highest 3 months post RAI (p=.031). In the stepwise multiple regression analysis, depression and fatigue were predicting factors for low QOL at all data collection times. Dysponia was a predicting factor for low QOL post RAI and 3 months post RAI. Conclusion: To increase QOL, it is necessary to provide information in advance regarding physical & psychological symptoms and to develop nursing intervention programs to decrease depression and fatigue.
The purpose of this study was to examine the change of couple relationship factors predicting marital satisfaction and divorce intention over time tv comparing the couples' first year with their present year of marriage. The couple relationship factors consisted of affection, ambivalence, affectional expression, the expression of negativity. The study subjects 355 married women having preschool children aged 7 years old and elementary school students in the 6th grade. Data were analyzed by SPSSWIN with the method of MANOVA. The results of this study showed that couples in happy groups without divorce intention became less affectionate and demonstrated less affectional expression, and more ambivalence and expression of negativity over time. However, the amount of change was not as large as that of the unhappy groups. The findings of this research indicated that the decline of affection and affectional expression and the increase of ambivalence and expression of negativity were probably, as normative, a natural consequence of the transition from the first year of marriage to a more mature relationship. Therefore, the change over time was not important. However, the amount and aspects of change were the main points which researchers and practitioners should pal attention to in the future.
The purpose of this study was to measure the factors influencing on the perception of helpfulness of marking the country of origin in predicting the quality and safety of pork. A total of 239 questionnaires were completed. A multinomial logit model is specified in order to estimate which factors influence the probability that a consumer perceives the country of origin as helpful in assessing food quality and food safety. The estimations were carried out using the logistic procedure of SAS. The results are as follows. The proportional odds assumptions of models were not violated at p<0.05. The effects of age, income, children, occupation and respondents informed on the importance of the country of origin in pork quality model were statistically significant. The effects of age, children, occupation and trust on the importance of the country of origin in pork safety model were statistically significant. The results from this study could be useful in developing marketing and health promotion strategies as well as government trade policies.
This study is attempted to define risk factor of youth runaway impulse and to structure forecast model through an extensive analysis of the factors influencing the runaway impulse of youth. The subjects were 610 high school students in Seoul and Kyunggido. The collected data was analysed by SAS. The differences between the runaway impulse group and the non-runaway impulse group were subject to chi-square and t-test. Also logistic regression analysis was conducted on the basis of purposeful selection method for constructing the forecast model. The findings are as follows : the major predicting factors of youth runaway impulse are sex(odds ratio=1.886, p=.009), existence of friends of the opposit sex(odds ratio=2.011, p=.007), anti-social personality(odds ratio= 4.953, p=.000), depressive trend(odds ratio= 2.695, p=.000), family structure(odds ratio= 5.381, p=.000), marital relationship(odds ratio =1.893, p=.009) and also between parents and youth(odds ratio=3.877, p=.000), emotional abuse(odds ratio=1.963, p=.003), authoritative controlled rearing(odds ratio=2.135, p=.005) and stress from school(odds ratio=1.924, p=.008). Therefore, the forecast model will be contribute to the nursing intervention for prevention of runaway youth.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.