• Title/Summary/Keyword: Predicting Patterns

Search Result 274, Processing Time 0.033 seconds

An Algorithm for Predicting Binding Sites in Protein-Nucleic Acid Complexes

  • Han, Nam-Shik;Han, Kyung-Sook
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2003.10a
    • /
    • pp.17-25
    • /
    • 2003
  • Determining the binding sites in protein-nucleic acid complexes is essential to the complete understanding of protein-nucleic acid interactions and to the development of new drugs. We have developed a set of algorithms for analyzing protein-nucleic acid interactions and for predicting potential binding sites in protein-nucleic acid complexes. The algorithms were used to analyze the hydrogen-bonding interactions in protein-RNA and protein-DNA complexes. The analysis was done both at the atomic and residue level, and discovered several interesting interaction patterns and differences between the two types of nucleic acids. The interaction patterns were used for predicting potential binding sites in new protein-RNA complexes.

  • PDF

Utilization of Planned Routes and Dead Reckoning Positions to Improve Situation Awareness at Sea

  • Kim, Joo-Sung;Jeong, Jung Sik;Park, Gyei-Kark
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.288-294
    • /
    • 2014
  • Understanding a ship's present position has been one of the most important tasks during a ship's voyage, in both ancient and modern times. Particularly, a ship's dead reckoning (DR) has been used for predicting traffic situations and collision avoidance actions. However, the current system that uses the traditional method of calculating DR employs the received position and speed data only. Therefore, it is not applicable for predicting navigation within the harbor limits, owing to the frequent changes in the ship's course and speed in this region. In this study, planned routes were applied for improving the reliability of the proposed system and predicting the traffic patterns in advance. The proposed method of determining the dead reckoning position (DRP) uses not only the ships' received data but also the navigational patterns and tracking data in harbor limits. The Mercator sailing formulas were used for calculating the ships' DRPs and planned routes. The data on the traffic patterns were collected from the automatic identification system and analyzed using MATLAB. Two randomly chosen ships were analyzed for simulating their tracks and comparing the DR method during the timeframes of the ships' movement. The proposed method of calculating DR, combined with the information on planned routes and DRPs, is expected to contribute towards improving the decision-making abilities of operators.

Predicting Common Patterns of Livestock-Vehicle Movement Using GPS and GIS: A Case Study on Jeju Island, South Korea

  • Qasim, Waqas;Cho, Jea Min;Moon, Byeong Eun;Basak, Jayanta Kumar;Kahn, Fawad;Okyere, Frank Gyan;Yoon, Yong Cheol;Kim, Hyeon Tae
    • Journal of Biosystems Engineering
    • /
    • v.43 no.3
    • /
    • pp.247-254
    • /
    • 2018
  • Purpose: Although previous studies have performed on-farm evaluations for the control of airborne diseases such as foot-and-mouth disease (FMD) and influenza, disease control during the process of livestock and manure transportation has not been investigated thoroughly. The objective of this study is to predict common patterns of livestock-vehicle movement. Methods: Global positioning system (GPS) data collected during 2012 and 2013 from livestock vehicles on Jeju Island, South Korea, were analyzed. The GPS data included the coordinates of moving vehicles according to the time and date as well as the locations of livestock farms and manure-keeping sites. Data from 2012 were added to Esri software ArcGIS 10.1 and two approaches were adopted for predicting common vehicle-movement patterns, i.e., point-density and Euclidean-distance tools. To compare the predicted patterns with actual patterns for 2013, the same analysis was performed on the actual data. Results: When the manure-keeping sites and livestock farms were the same in both years, the common patterns of 2012 and 2013 were similar; however, differences arose in the patterns when these sites were changed. By using the point-density tool and Euclidean-distance tool, the average similarity between the predicted and actual common patterns for the three vehicles was 80% and 72%, respectively. Conclusions: From this analysis, we can determine common patterns of livestock vehicles using previous year's data. In the future, to obtain more accurate results and to devise a model for predicting patterns of vehicle movement, more dependent and independent variables will be considered.

Predicting Selling Price of First Time Product for Online Seller using Big Data Analytics

  • Deora, Sukhvinder Singh;Kaur, Mandeep
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.2
    • /
    • pp.193-197
    • /
    • 2021
  • Customers are increasingly attracted towards different e-commerce websites and applications for the purchase of products significantly. This is the reason the sellers are moving to different internet based services to sell their products online. The growth of customers in this sector has resulted in the use of big data analytics to understand customers' behavior in predicting the demand of items. It uses a complex process of examining large amount of data to uncover hidden patterns in the information. It is established on the basis of finding correlation between various parameters that are recorded, understanding purchase patterns and applying statistical measures on collected data. This paper is a document of the bottom-up strategy used to manage the selling price of a first-time product for maximizing profit while selling it online. It summarizes how existing customers' expectations can be used to increase the sale of product and attract the attention of the new customer for buying the new product.

Clustering of Seoul Public Parking Lots and Demand Prediction (서울시 공영주차장 군집화 및 수요 예측)

  • Jeongjoon Hwang;Young-Hyun Shin;Hyo-Sub Sim;Dohyun Kim;Dong-Guen Kim
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.4
    • /
    • pp.497-514
    • /
    • 2023
  • Purpose: This study aims to estimate the demand for various public parking lots in Seoul by clustering similar demand types of parking lots and predicting the demand for new public parking lots. Methods: We examined real-time parking information data and used time series clustering analysis to cluster public parking lots with similar demand patterns. We also performed various regression analyses of parking demand based on diverse heterogeneous data that affect parking demand and proposed a parking demand prediction model. Results: As a result of cluster analysis, 68 public parking lots in Seoul were clustered into four types with similar demand patterns. We also identified key variables impacting parking demand and obtained a precise model for predicting parking demands. Conclusion: The proposed prediction model can be used to improve the efficiency and publicity of public parking lots in Seoul, and can be used as a basis for constructing new public parking lots that meet the actual demand. Future research could include studies on demand estimation models for each type of parking lot, and studies on the impact of parking lot usage patterns on demand.

Frequency of different maxillary sinus septal patterns found on cone-beam computed tomography and predicting the associated risk of sinus membrane perforation during sinus lifting

  • Sigaroudi, Ali Khalighi;Kajan, Zahra Dalili;Rastgar, Shabnam;Asli, Hamid Neshandar
    • Imaging Science in Dentistry
    • /
    • v.47 no.4
    • /
    • pp.261-267
    • /
    • 2017
  • Purpose: Analyzing different patterns of maxillary sinus septa in cone-beam computed tomography (CBCT) images and predicting maxillary sinus membrane perforations. Materials and Methods: In this cross-sectional study, CBCT images of 222 patients ranging from 20 to 81 years old were evaluated. One hundred fifty-two patients (93 females and 59 males) who had maxillary sinus septa in axial views were included in this study. Cross-sectional images were used to determine classifications of sinus septa and the risk of membrane perforation using a method modified from Al-Faraje et al. Variables of sex, age, and dental status were considered. Chi-squared and Kruskal-Wallis tests were used for data analysis(P<.05). Results: In this study, 265 maxillary sinus septal patterns were found. The mean age of the patients was $44.1{\pm}14.7$ years old. The Class I and VII-div II patterns had the greatest and least prevalence, respectively. Furthermore, there was a significant relationship between the location of septa and the frequency of membrane perforation risk (P<.05). In this study, the relationship of different patterns of septa with dental status did not differ significantly (P>0.05). Conclusion: A higher prevalence of moderate risk of membrane perforation in the molar region relative to the premolar region was observed. Furthermore, maxillary sinus septa occur most frequently in the molar region, demonstrating the importance of paying attention to this region during sinus lift surgery. This study did not show any relationship between tooth loss and the presence of septa.

Predicting Surgical Complications in Adult Patients Undergoing Anterior Cervical Discectomy and Fusion Using Machine Learning

  • Arvind, Varun;Kim, Jun S.;Oermann, Eric K.;Kaji, Deepak;Cho, Samuel K.
    • Neurospine
    • /
    • v.15 no.4
    • /
    • pp.329-337
    • /
    • 2018
  • Objective: Machine learning algorithms excel at leveraging big data to identify complex patterns that can be used to aid in clinical decision-making. The objective of this study is to demonstrate the performance of machine learning models in predicting postoperative complications following anterior cervical discectomy and fusion (ACDF). Methods: Artificial neural network (ANN), logistic regression (LR), support vector machine (SVM), and random forest decision tree (RF) models were trained on a multicenter data set of patients undergoing ACDF to predict surgical complications based on readily available patient data. Following training, these models were compared to the predictive capability of American Society of Anesthesiologists (ASA) physical status classification. Results: A total of 20,879 patients were identified as having undergone ACDF. Following exclusion criteria, patients were divided into 14,615 patients for training and 6,264 for testing data sets. ANN and LR consistently outperformed ASA physical status classification in predicting every complication (p < 0.05). The ANN outperformed LR in predicting venous thromboembolism, wound complication, and mortality (p < 0.05). The SVM and RF models were no better than random chance at predicting any of the postoperative complications (p < 0.05). Conclusion: ANN and LR algorithms outperform ASA physical status classification for predicting individual postoperative complications. Additionally, neural networks have greater sensitivity than LR when predicting mortality and wound complications. With the growing size of medical data, the training of machine learning on these large datasets promises to improve risk prognostication, with the ability of continuously learning making them excellent tools in complex clinical scenarios.

TEMPORAL CLASSIFICATION METHOD FOR FORECASTING LOAD PATTERNS FROM AMR DATA

  • Lee, Heon-Gyu;Shin, Jin-Ho;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.594-597
    • /
    • 2007
  • We present in this paper a novel mid and long term power load prediction method using temporal pattern mining from AMR (Automatic Meter Reading) data. Since the power load patterns have time-varying characteristic and very different patterns according to the hour, time, day and week and so on, it gives rise to the uninformative results if only traditional data mining is used. Also, research on data mining for analyzing electric load patterns focused on cluster analysis and classification methods. However despite the usefulness of rules that include temporal dimension and the fact that the AMR data has temporal attribute, the above methods were limited in static pattern extraction and did not consider temporal attributes. Therefore, we propose a new classification method for predicting power load patterns. The main tasks include clustering method and temporal classification method. Cluster analysis is used to create load pattern classes and the representative load profiles for each class. Next, the classification method uses representative load profiles to build a classifier able to assign different load patterns to the existing classes. The proposed classification method is the Calendar-based temporal mining and it discovers electric load patterns in multiple time granularities. Lastly, we show that the proposed method used AMR data and discovered more interest patterns.

  • PDF

Robustness of Data Mining Tools under Varting Levels of Noise:Case Study in Predicting a Chaotic Process

  • Kim, Steven H.;Lee, Churl-Min;Oh, Heung-Sik
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.23 no.1
    • /
    • pp.109-141
    • /
    • 1998
  • Many processes in the industrial realm exhibit sstochastic and nonlinear behavior. Consequently, an intelligent system must be able to nonlinear production processes as well as probabilistic phenomena. In order for a knowledge based system to control a manufacturing processes as well as probabilistic phenomena. In order for a knowledge based system to control manufacturing process, an important capability is that of prediction : forecasting the future trajectory of a process as well as the consequences of the control action. This paper examines the robustness of data mining tools under varying levels of noise while predicting nonlinear processes, includinb chaotic behavior. The evaluated models include the perceptron neural network using backpropagation (BPN), the recurrent neural network (RNN) and case based reasoning (CBR). The concepts are crystallized through a case study in predicting a chaotic process in the presence of various patterns of noise.

  • PDF

Predicting Power Generation Patterns Using the Wind Power Data (풍력 데이터를 이용한 발전 패턴 예측)

  • Suh, Dong-Hyok;Kim, Kyu-Ik;Kim, Kwang-Deuk;Ryu, Keun-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.11
    • /
    • pp.245-253
    • /
    • 2011
  • Due to the imprudent spending of the fossil fuels, the environment was contaminated seriously and the exhaustion problems of the fossil fuels loomed large. Therefore people become taking a great interest in alternative energy resources which can solve problems of fossil fuels. The wind power energy is one of the most interested energy in the new and renewable energy. However, the plants of wind power energy and the traditional power plants should be balanced between the power generation and the power consumption. Therefore, we need analysis and prediction to generate power efficiently using wind energy. In this paper, we have performed a research to predict power generation patterns using the wind power data. Prediction approaches of datamining area can be used for building a prediction model. The research steps are as follows: 1) we performed preprocessing to handle the missing values and anomalous data. And we extracted the characteristic vector data. 2) The representative patterns were found by the MIA(Mean Index Adequacy) measure and the SOM(Self-Organizing Feature Map) clustering approach using the normalized dataset. We assigned the class labels to each data. 3) We built a new predicting model about the wind power generation with classification approach. In this experiment, we built a forecasting model to predict wind power generation patterns using the decision tree.