• 제목/요약/키워드: Predicted exposure concentration (PEC)

검색결과 13건 처리시간 0.035초

수질 및 토양오염 모니터링 결과를 이용한 카드뮴의 환경위해성평가 (Environmental Risk Assessment of Cadmium using National Monitoring Data)

  • 박광식;신동천
    • Environmental Analysis Health and Toxicology
    • /
    • 제19권1호
    • /
    • pp.65-72
    • /
    • 2004
  • Environmental risk assessment of cadmium compounds was conducted using national monitoring data of aquatic and terrestrial compartments of local area. Aquatic and terrestrial toxicities of cadmium compounds on algae, daphnid, fish, earthworm, springtails and other species were evaluated. The toxicity data evaluated in this study were mainly from ECOTOX database provided by US EPA. Assessment factors were determined according to the EU technical guidance document and/or OECD proposal. Predicted no effect concentration (PNEC) values of aquatic and terrestrial toxicity were 25$\mu\textrm{g}$/L and 0.2 mg/kg, respectively and they were compared with cadmium exposure data of several local areas, which were used as Predicted exposure concentration(PEC) values. Most of the local area were found to be not risky. However, the risk values (PEC/NEC) of some metropolitan areas were greater than 1 when the most conservative PNEC value was applied.

시나리오별 논에서의 molinate 노출위험도 분석: (2) 노출위험도 평가 (Scenario-Based Exposure Risk Assessment of Molinate in a Paddy Plot ; (2) Exposure Risk Assessment)

  • 박기중;정상옥
    • 한국농공학회논문집
    • /
    • 제50권4호
    • /
    • pp.17-24
    • /
    • 2008
  • Exposure risk assessment of pesticide molinate using the RICEWQ model in a rice paddy plot was performed to observe the effects of various water and pesticide management scenarios. Several scenarios were developed to represent the specific water and pesticide management practices of rice cultivation in Korea. The results of the scenario analysis using the RICEWQ model simulation from the previous studies were analysed. The molinate risk for aquatic organisms is evaluated by the ratio of the predicted environmental concentration(PEC) and the predicted no-effect concentration(PNEC). The results showed that the no-effect periods for aquatic organisms for the deep, shallow and very shallow irrigation conditions were 33.3, 28.9 and 25.6 DATs for the lable rate application and 36.4, 33.7 and 30.8 DATs for the double lable rate application, respectively. The higher application rate showed greater exposure risk to the aquatic organisms. Based on this study, the withholding period of molinate practiced in Korea, that is 3 to 4 DATs, must be much longer. The results of this study can be used for the non-point source pollution control and environmental policy making regarding pesticides.

QUAL2E 모형을 이용한 하천수질의 위해성평가 (Risk assessment for water quality of a river using QUAL2E model)

  • 김정욱;김연수;강나래;정재원;김수전;노희성;김형수
    • 한국습지학회지
    • /
    • 제16권3호
    • /
    • pp.441-450
    • /
    • 2014
  • 본 연구에서는 합리적인 수질관리를 위해서 하천의 자정능력을 고려하여 안성천 유역 내 유해성분 중 ABS(음이온 계면활성제)성분에 대해서 QUAL2E모형을 이용하여 위해성평가를 실시하였다. 수질모의결과 안성천과 진위천에서 BOD, ABS의 실측치와 예측치가 비교적 잘 일치함을 보여주고 있으며, DO에 대해서는 예측값과 실측값 사이에 오차가 발생하지만 농도변화의 추이는 잘 나타내고 있었다. 위해성지수는 오염물질의 예상 노출농도(PEC)와 하천수질에 영향을 주지 않는 예상무영향농도(PNEC)를 통해 계산하였고 위해성 비를 산정하여 위해성 지수를 평가하였다. ABS가 하천의 자정작용에 미치는 영향 분석 결과는 안성천[0.0003(Bressan), 0.06(환경부기준)], 진위천[0.0002(Bressan), 0.04(환경부기준)], ABS가 하천의 수생생태계에 미치는 영향에 대한 분석 결과는 안성천[0.0667(Bressan), 0.005(환경부기준)], 진위천[0.1(Bressan), 0.0075(환경부기준)]으로 국립환경과학원고시 제2012-30호에서 제시되어 있는 위해성이 있다고 판단되는 위해성 비의 기준치 값 1보다 작아 하천의 자정능력과 하천의 수생생태계에 영향을 주지 않은 것으로 분석되었다. 본 연구에서 적용된 방법은 간단하며 현재 환경부 수질기준보다 상세히 유해성분에 대한 정보를 줄 수 있다고 판단된다.

확률생태위해성평가(PERA) 선진국 사례분석 및 국내수계에 적합한 PERA 기법 제안 (Comparative Study of Probabilistic Ecological Risk Assessment (PERA) used in Developed Countries and Proposed PERA approach for Korean Water Environment)

  • 안윤주;남선화;이우미
    • 한국물환경학회지
    • /
    • 제25권4호
    • /
    • pp.494-501
    • /
    • 2009
  • Probabilistic Ecological risk assessment (PERA) is extensive approach to qualify and quantify risk on the multi species based on species sensitivity distribution (SSD). As a while, deterministic ecological risk assessment (DERA) considers the comparison of predicted no-effect concentration (PNEC) and predicted exposure concentration (PEC). DERA is used to determine if there is potential risk or no risk, and it doesn't consider the nature variability and the species sensitivity. But PERA can be more realistic and reasonable approach to estimate likelihood or risk. In this study, we compared PERA used in developed countries, and proposed PERA applicable for the Korean water environment. Taxonomic groups were classified as "class" level including Actinopterygill, Branchiopoda, Chlorophyceae, Maxillapoda, Insects, Bivalvia, Gastropoda, Secernentea, Polychaeta, Monocotyldoneae, and Chanophyceae in this study. Statistical extrapolation method (SEM), statistical extrapolation method $_{acutechronicratio}$ ($SEM_{ACR}$) and assessment factor method (AFM) were used to calculate the ecological protective concentration based on qualitative and quantitative levels of taxonomic toxicity data. This study would be useful to establish the PERA for the protection of aquatic ecosystem in Korea.

수종 살충제가 줄지렁이 치사에 미치는 영향평가 (Assessment of the Effects of Some Insecticides on Mortality of Earthworm (Eisenia fetida))

  • 나영은;방혜선;강기경;한민수;안용준
    • 한국환경농학회지
    • /
    • 제24권3호
    • /
    • pp.289-294
    • /
    • 2005
  • The toxic effects of 12 commercially available insecticides on the earthworm, Eisenia fetida (Savigny), were evaluated using artificial soil, surface sprayed soil, immersion, and contact filter tests. The risk to earthworm was assessed by the TER (toxic exposure ratio) value, which was calculated by the formula, TER=NOEC/PEC (predicted environmental concentration). TER was 3 for methomyl SL, 20 for carbaryl WP, 20 for phosphamidon SL, 30 for imidacloprid WP, and 60 for dichlorvos EC the in artificial soil test. At recommended, the earthworm mortality to methomyl SL reached 50% in the surface sprayed soil test, 72% in the immersion test, 30% in the contact filter paper test, whereas that to imidacloprid WP reached 56, 32, and 100 respectively. As a result of the four methods, methomyl SL and imidacloprid WP would be toxic insecticides to earthworm.

납과 비소에 대한 환경매체별 생태위해성평가 (Ecological Risk Assessment of Lead and Arsenic by Environmental Media)

  • 이병우;이병천;김필제;윤효정
    • 한국환경보건학회지
    • /
    • 제46권1호
    • /
    • pp.1-10
    • /
    • 2020
  • Objectives: This study intends to evaluate the ecological risk of lead (Pb), arsenic (As), and their compounds according to the 2010 action plan on inventory and management for national priority chemicals and provide calculations of risks to the environment. By doing so, we aim to inform risk management measures for the target chemicals. Methods: We conducted species sensitivity distribution (SSD) analysis using the collected ecotoxicity data and obtained predicted no effect concentrations (PNECs) for the in-water environment using a hazardous concentration of 5% (HC5) protective of most species (95%) in the environment. Based on the calculated PNECs for aquatic organisms, PNEC values for soil and sediment were calculated using the partition coefficient. We also calculated predicted exposure concentration (PEC) from nation-wide environmental monitoring data and then the hazard quotient (HQ) was calculated using PNEC for environmental media. Results: Ecological toxicity data was categorized into five groups and five species for Pb and four groups and four species for As. Based on the HC5 values from SSD analysis, the PNEC value for aquatic organisms was calculated as 0.40 ㎍/L for Pb and 0.13 ㎍/L for As. PNEC values for soil and sediment calculated using a partition coefficient were 77.36 and 350.50 mg/kg for Pb and 24.20 and 112.75 mg/kg for As. The analysis of national environmental monitoring data showed that PEC values in water were 0.284 ㎍/L for Pb and 0.024 ㎍/L for As, while those in soil and sediment were respectively 45.9 and 44 mg/kg for Pb, and 11.40 and 19.80 mg/kg for As. Conclusions: HQs of Pb and As were 0.70 and 0.18 in water, while those in soil and sediment were 0.59 and 0.13 for Pb and 0.47 and 0.18 for As. With HQs <1 of lead and arsenic in the environment, their ecological risk levels are found to be low.

NaDCC 주입 선박평형수 처리기술의 해양생태위해성에 대한 연구 (Ecotoxicological Effects of NaDCC injection method in Ballast Water Management system on Marine Environments)

  • 김태원;문창호;김영윤;손민호
    • 해양환경안전학회:학술대회논문집
    • /
    • 해양환경안전학회 2017년도 추계학술발표회
    • /
    • pp.236-236
    • /
    • 2017
  • Effluent treated by an NaDCC injection method in Ballast water management system (BWMS) contains reactive chlorine species and disinfection by-products (DBPs). In this study, we conducted whole effluent toxicity (WET) testing and ecological risk assessment (ERA) to investigate its ecotoxicological effects on marine environment. WET testing was carried out for four marine pelagic and freshwater organisms, i.e., diatom Skeletonema costatum, Navicula pellicuosa, chlorophyta Dunaliella tertiolecta, Pseudokirchneriella subcapitata, rotifer Brachionus plicatilis, Brachionus calyciflorus and fish Cyprinodon variegatus, Pimephales promelas. The biological toxicity test revealed that algae was the only biota that showed apparent toxicity to the effluent; it showed no observed effect concentration (NOEC), lowest observable effect concentration (LOEC) and effect concentration of 50% (EC50) values of 25-50%, 50-100% and >100%, respectively, at three water condition, but did not show any significant toxicities on other biota. Meanwhile, chemical analysis revealed that the BWMS effluent contained total residual oxidants (TROs) below $0.03{\mu}g/L$ and a total of 25 DBPs such as bromate, volatile halogenated organic compounds (VOCs), halogenated acetonitriles (HANs), halogenated acetic acids (HAAs), chloropicrin and Isocyanuric acid. Based on ERA, the 25 DBPs were not considered to have persistency, bioaccumulation and toxicity (PBT) properties. The ratio of predicted environmental concentration (PEC) to predicted no effect concentration (PNEC) of the other DBPs did not exceed 1 for General harbor environment. However, four substances (Isocyanuric acid, Tribromomethane, Chloropicrin and Monochloroacetic acid) were exceed 1 for Nearship environment. But observed toxicity in the test water on algal growth inhibition would be mitigated by normal dilution factor of 5 applied for nearship exposure. Thus, our results of WET testing and ERA showed that the BWMS effluent treated by NaDCC injection method would have no adverse impacts on marine environment.

  • PDF

Modeling the Fate of Priority Pharmaceuticals in Korea in a Conventional Sewage Treatment Plant

  • Kim, Hyo-Jung;Lee, Hyun-Jeoung;Lee, Dong-Soo;Kwon, Jung-Hwan
    • Environmental Engineering Research
    • /
    • 제14권3호
    • /
    • pp.186-194
    • /
    • 2009
  • Understanding the environmental fate of human and animal pharmaceuticals and their risk assessment are of great importance due to their growing environmental concerns. Although there are many potential pathways for them to reach the environment, effluents from sewage treatment plants (STPs) are recognized as major point sources. In this study, the removal efficiencies of the 43 selected priority pharmaceuticals in a conventional STP were evaluated using two simple models: an equilibrium partitioning model (EPM) and STPWIN$^{TM}$ program developed by US EPA. It was expected that many pharmaceuticals are not likely to be removed by conventional activated sludge processes because of their relatively low sorption potential to suspended sludge and low biodegradability. Only a few pharmaceuticals were predicted to be easily removed by sorption or biodegradation, and hence a conventional STP may not protect the environment from the release of unwanted pharmaceuticals. However, the prediction made in this study strongly relies on sorption coefficient to suspended sludge and biodegradation half-lives, which may vary significantly depending on models. Removal efficiencies predicted using the EPM were typically higher than those predicted by STPWIN for many hydrophilic pharmaceuticals due to the difference in prediction method for sorption coefficients. Comparison with experimental organic carbon-water partition coefficients ($K_{ocs}) revealed that log KOW-based estimation used in STPWIN is likely to underestimate sorption coefficients, thus resulting low removal efficiency by sorption. Predicted values by the EPM were consistent with limited experimental data although this model does not include biodegradation processes, implying that this simple model can be very useful with reliable Koc values. Because there are not many experimental data available for priority pharmaceuticals to evaluate the model performance, it should be important to obtain reliable experimental data including sorption coefficients and biodegradation rate constants for the prediction of the fate of the selected pharmaceuticals.

환경매체별 카드뮴의 생태위해성평가 (Ecological Risk Assessment for Cadmium in Environmental Media)

  • 이병우;이병천;윤효정;박경화;김필제
    • 한국환경보건학회지
    • /
    • 제44권6호
    • /
    • pp.548-555
    • /
    • 2018
  • Objectives: We conducted ecological risk assessment for cadmium, a heavy metal and carcinogen, to identify safety standards by environmental media and to determine its impact on ecosystems by estimating and evaluating exposure levels. Methods: Species sensitivity distributions (SSDs) were generated using ECOTOX DB. A hazardous concentration of 5% (HC5) protective of most species (95%) in the environment was estimated. Using this estimate, predicted no effect concentrations (PNECs) were calculated for aquatic organisms. Based on the calculated PNECs for aquatic organisms, PNEC values for soil and sediment were calculated using the partition coefficient. Predicted exposure concentrations (PECs) were also calculated from environmental monitoring data with hazard quotients (HQs) calculated using PNECs for environmental media. Results: Chronic toxicity data were categorized into four groups and 11 species. In species sensitivity distribution (SSD) analysis, HC5 was $0.340{\mu}g/L$. Based on this value, the PNEC value for aquatic organisms was calculated as $0.113{\mu}g/L$. PNEC values for soil and sediments using a partition coefficient were calculated as 15.02 mg/kg and 90.61 mg/kg, respectively. In an analysis of environmental monitoring data, PEC values were calculated as $0.017{\mu}g/L$ for water, 1.01 mg/kg for soil, and 0.521 mg/kg for sediment. Conclusions: HQs were 0.150, 0.067 and 0.006 for water, soil and sediment, respectively. HQs of secondary toxicity were 0.365 for birds and 0.024 for mammals. In principle, it is judged that an HQ above 1 indicates a high level of risk concern while an HQ less than 1 indicates an extremely low level of risk concern. Therefore, with HQs of cadmium in the environment being <1, its risk levels can be considered low for each media.

4,4'-Methylenedianiline의 환경매체별 위해성평가 (Ecological Risk Assessment of 4,4'-Methylenedianiline)

  • 김현수;이대엽;우경숙;유시은;이인혜;지경희;서정관;조훈제
    • 한국환경보건학회지
    • /
    • 제49권6호
    • /
    • pp.334-343
    • /
    • 2023
  • Background: South Korea's Act on Registration and Evaluation, etc. of Chemicals (known as K-REACH) was established to protect public health and the environment from hazardous chemicals. 4,4'-Methylenedianiline (MDA), which is used as a major intermediate in industrial polymer production and as a vulcanizing agent in South Korea, is classified as a toxic substance under the K-REACH act. Although MDA poses potential ecological risks due to industrial emissions and hazards to aquatic ecosystems, no ecological risk assessment has been conducted. Objectives: The aim of this study is to assess the ecological risk of MDA by identifying the actual exposure status based on the K-REACH act. Methods: Various toxicity data were collected to establish predicted no effect concentrations (PNECs) for water, sediment, and soil. Using the SimpleBox Korea v2.0 model with domestic release statistical data and EU emission factors, predicted environmental concentrations (PECs) were derived for ten sites, each referring to an MDA-using company. Hazard quotient (HQ) was calculated by ratio of the PECs and PNECs to characterize the ecological risk posed by MDA. To validate the results of modeling-based assessment, concentration of MDA was measured using in-site freshwater samples (two to three samples per site). Results: PNECs for water, sediment, and soil were 0.000525 mg/L, 4.36 mg/kg dw, and 0.1 mg/kg dw, respectively. HQ for surface water and sediment at several company sites exceeded 1 due to modeling data showing markedly high PEC in each environmental compartment. However, in the results of validation using in-site surface water samples, MDA was not detected. Conclusions: Through an ecological risk assessment conducted in accordance with the K-REACH act, the risk level of MDA emitted into the environmental compartments in South Korea was found to be low.