• Title/Summary/Keyword: Predict Model

Search Result 8,269, Processing Time 0.045 seconds

Change in Potential Productivity of Rice around Lake Juam Due to Construction of Dam by SIMRIW (벼 생장모형 SIMRIW를 이용한 주암호 건설에 따른 주변지역의 벼 잠재생산성 변이 추정)

  • 임준택;윤진일;권병선
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.6
    • /
    • pp.729-738
    • /
    • 1997
  • To estimate the change in rice productivity around lake Juam due to construction of artificial lake, growth, yield components and yield of rice were measured at different locations around lake Juam for three years from 1994 to 1996. Automated weather stations(AWS) were installed nearby the experimental paddy fields, and daily maximum, average and minimum temperature, solar radiation, relative humidity, and precipitation were measured for the whole growing period of rice. Plant height, number of tillers, leaf area and shoot dry weight per hill were observed from 8 to 10 times in the interval of 7 days after transplanting. Yield and yield components of rice were observed at the harvest time. Simulation model of rice productivity used in the study was SIMRIW developed by Horie. The observed data of rice at 5 locations in 1994, 3 locations in 1995 and 4 locations in 1996 were inputted in the model to estimate the unknown parameters. Comparisons between observed and predicted values of shoot dry weights, leaf area indices, and rough rice yield were fairly well, so that SIMRIW appeared to predict relatively well the variations in productivity due to variations of climatic factors in the habitat. Climatic elements prior to as well as posterior to dam construction were generated at six locatons around lake Juam for thirty years by the method of Pickering et al. Climatic elements simulated in the study were daily maximum and minimum temperature, and amount of daily solar radiation. The change in rice productivity around lake Juam due to dam construction were estimated by inputting the generated climatic elements into SIMRIW. Average daily maximum temperature after dam construction appeared to be more or less lower than that before dam construction, while average daily minimum temperature became higher after dam construction. Average amount of daily solar radiation became lower with 0.9 MJ $d^{-1}$ after dam construction. As a result of simulation, the average productivity of habitats around lake Juam decreased about 5.6% by the construction of dam.

  • PDF

Exploring Ways to Improve the Predictability of Flowering Time and Potential Yield of Soybean in the Crop Model Simulation (작물모형의 생물계절 및 잠재수량 예측력 개선 방법 탐색: I. 유전 모수 정보 향상으로 콩의 개화시기 및 잠재수량 예측력 향상이 가능한가?)

  • Chung, Uran;Shin, Pyeong;Seo, Myung-Chul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.4
    • /
    • pp.203-214
    • /
    • 2017
  • There are two references of genetic information in Korean soybean cultivar. This study suggested that the new seven genetic information to supplement the uncertainty on prediction of potential yield of two references in soybean, and assessed the availability of two references and seven genetic information for future research. We carried out evaluate the prediction on flowering time and potential yield of the two references of genetic parameters and the new seven genetic parameters (New1~New7); the new seven genetic parameters were calibrated in Jinju, Suwon, Chuncheon during 2003-2006. As a result, in the individual and regional combination genetic parameters, the statistical indicators of the genetic parameters of the each site or the genetic parameters of the participating stations showed improved results, but did not significant. In Daegu, Miryang, and Jeonju, the predictability on flowering time of genetic parameters of New7 was not improved than that of two references. However, the genetic parameters of New7 showed improvement of predictability on potential yield. No predictability on flowering time of genetic parameters of two references as having the coefficient of determination ($R^2$) on flowering time respectively, at 0.00 and 0.01, but the predictability of genetic parameter of New7 was improved as $R^2$ on flowering time of New7 was 0.31 in Miryang. On the other hand, $R^2$ on potential yield of genetic parameters of two references were respectively 0.66 and 0.41, but no predictability on potential yield of genetic parameter of New7 as $R^2$ of New7 showed 0.00 in Jeonju. However, it is expected that the regional combination genetic parameters with the good evaluation can be utilized to predict the flowering timing and potential yields of other regions. Although it is necessary to analyze further whether or not the input data is uncertain.

Growth Curve Estimation of Stand Volume by Major Species and Forest Type on Actual Forest in Korea (주요 수종 및 임상별 현실림의 재적생장량 곡선 추정)

  • Yoon, Jun-Hyuck;Bae, Eun-Ji;Son, Yeong-Mo
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.4
    • /
    • pp.648-657
    • /
    • 2021
  • This study was conducted to estimate the volume growth by forest type and major species using the national forest resource inventory and to predict the final age of maturity by deriving the mean annual increment (MAI) and the current annual increment (CAI). We estimated the volume growth using the Chapman-Richards model. In the volume estimation equations by forest type, coniferous forests exhibited the highest growth. According to the estimation formula for each major species, Larix kaempferi will grow the highest among coniferous tree species and Quercus mongolica among broad-leaved tree species. And these estimation formulas showed that the fitness index was generally low, such as 0.32 for L. kaempferi and 0.21 for Quercus variabilis. In the analysis of residual amount, which indicates the applicability of the volume estimation formula, the estimates of the estimation formula tended to be underestimated in about 30 years or more, but most of the residuals were evenly distributed around zero. Therefore, these estimation formulas have no difficulty estimating the volume of actual forest species in Korea. The maximum age attained by calculating MAI was 34 years for P. densiflora, 35 years for L. kaempferi, and 31 years for P. rigida among coniferous tree species. In broad-leaved tree species, we discovered that the maximum age was 32 years for Q. variabilis, 30 years for Q. acutissima, and 29 years for Q. mongolica. We calculated MAI and CAI to detect the point at which these two curves intersected. This point was defined by the maximum volume harvesting age. These results revealed no significant difference between the current standard cutting age in public and private forests recommended by the Korea Forest Service, supporting the reliability of forestry policy data.

A longitudinal analysis of high school students' dropping out: Focusing on the change pattern of dropout, changes in school violence and school counseling. (전국 고등학교 학생의 학업중단에 대한 종단적 분석 -학업중단 변화양상에 따른 유형탐색, 학교폭력 및 학교상담의 변화추이를 중심으로-)

  • Kwon, Jae-Ki;Na, Woo-Yeol
    • Journal of the Korean Society of Child Welfare
    • /
    • no.59
    • /
    • pp.209-234
    • /
    • 2017
  • This study viewed schools as a cause of students dropping out and posited that dropping out of high school would vary depending on the characteristics and influencing factors of the school from which students were dropping out. Therefore, focusing on schools, we longitudinally investigated the change patterns of school dropout across high schools in the country, and the types of changes in dropping out of high school. In addition, we predicted the general characteristics of schools according to the type of school students were dropping out from, looked at the changes in the major factors (i.e., school violence and school counseling) affecting school dropout, and reviewed schools' long-term efforts and outcomes in relation to school dropout. For this purpose, KERIS EDSS's "Secondary School Information Disclosure Data" were used. The final model included data collected five years20122016) from high schools across the country. The results were as follows. First, in order to examine the longitudinal change patterns of dropping out of high schools, a latent growth models analysis was conducted, and it revealed that, as time passed, the dropout rate decreased. Second, growth mixture modeling was used to explore types according to the change patterns of the school students were dropping out from. The results showed three types: the "remaining in school" type, the "gradually decreasing school dropout" type, and the "increasing school dropping out". Third, the multinomial logistic regression was conducted to predict the general characteristics of schools by type. The results showed that public schools, vocational schools, and schools with a large number of students who have below the basic levels in Korean, English and mathematics were more likely to belong to the "increasing school dropout" type. Further, the larger the total number of students, the higher the probability of belonging to the "remaining in school" type or the "gradually decreasing school dropout" type. Lastly, growth mixture modeling was used to analyze the trend of school violence and school counseling according to the three types. The focus was on the "gradually decreasing school dropout" type. In the case of the "gradually decreasing school dropout" type, it was found that as time passed, the number of school violence cases and the number of offenders gradually decreased. In addition, in terms of change in school counseling the results revealed that the number of placement of professional counselors in schools increased every year and peer counseling was continuously promoted, which may account for the "gradually decreasing school dropout" type.

Stress distribution of molars restored with minimal invasive and conventional technique: a 3-D finite element analysis (최소 침습적 충진 및 통상적 인레이 법으로 수복한 대구치의 응력 분포: 3-D 유한 요소 해석)

  • Yang, Sunmi;Kim, Seon-mi;Choi, Namki;Kim, Jae-hwan;Yang, Sung-Pyo;Yang, Hongso
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.34 no.4
    • /
    • pp.297-305
    • /
    • 2018
  • Purpose: This study aimed to analyze stress distribution and maximum von Mises stress generated in intracoronal restorations and in tooth structures of mandibular molars with various types of cavity designs and materials. Materials and Methods: Three-dimensional solid models of mandible molar such as O inlay cavity with composite and gold (OR-C, OG-C), MO inlay cavity with composite and gold (MR-C, MG-C), and minimal invasive cavity on occlusal and proximal surfaces (OR-M, MR-M) were designed. To simulate masticatory force, static axial load with total force of 200 N was applied on the tooth at 10 occlusal contact points. A finite element analysis was performed to predict stress distribution generated by occlusal loading. Results: Restorations with minimal cavity design generated significantly lower values of von Mises stress (OR-M model: 26.8 MPa; MR-M model: 72.7 MPa) compared to those with conventional cavity design (341.9 MPa to 397.2 MPa). In tooth structure, magnitudes of maximum von Mises stresses were similar among models with conventional design (372.8 - 412.9 MPa) and models with minimal cavity design (361.1 - 384.4 MPa). Conclusion: Minimal invasive models generated smaller maximum von Mises stresses within restorations. Within the enamel, similar maximum von Mises stresses were observed for models with minimal cavity design and those with conventional design.

The Quantity and Pattern of Leaf Fall and Nitrogen Resorption Strategy by Leaf-litter in the Gwangneung Natural Broadleaved Forest (광릉숲 천연활엽수림의 수종별 낙엽 현상과 질소 재전류 특성)

  • Kwon, Boram;Kim, Hyunseok;Yi, Myong Jong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.3
    • /
    • pp.208-220
    • /
    • 2019
  • The seasonality of leaf fall has important implications for understanding the response of trees' phenology to climate change. In this study, we quantified the leaf fall pattern with a model to estimate the timing and speed of leaf litter according to species and considered the nutrient use strategy of canopy species. In the autumns of 2015 and 2016, leaf litter was collected periodically using 36 litter-traps from the deciduous forests in Gwangneung and sorted by species. The seasonal leaf fall pattern was estimated using the non-linear regression model of Dixon. Additionally, the resorption rate was calculated by analyzing the nitrogen concentration of the leaf litter at each collection time. The leaf litter generally began in early October and ended in mid-November depending on the species. At the peak time (T50) of leaf fall, on average, Carpinus laxiflora was first, and Quercus serrata was last. The rate of leaf fall was fastest (18.6 days) for Sorbus alnifolia in 2016 and slowest (40.8 days) for C. cordata in 2015. The nitrogen resorption rates at T50 were 0.45% for Q. serrata and 0.48% for C. laxiflora, and the resorption rate in 2015 with less precipitation was higher than in 2016. Since falling of leaf litter is affected by environmental factors such as temperature, precipitation, photoperiod, and $CO_2$ during the period attached foliage, the leaf fall pattern and nitrogen resorption differed year by year depending on the species. If we quantify the fall phenomena of deciduous trees and analyze them according to various conditions, we can predict whether the changes in leaf fall timing and speed due to climate change will prolong or shorten the growth period of trees. In addition, it may be possible to consider how this affects their nutrient use strategy.

Application of Spectral Indices to Drone-based Multispectral Remote Sensing for Algal Bloom Monitoring in the River (하천 녹조 모니터링을 위한 드론 다중분광영상의 분광지수 적용성 평가)

  • Choe, Eunyoung;Jung, Kyung Mi;Yoon, Jong-Su;Jang, Jong Hee;Kim, Mi-Jung;Lee, Ho Joong
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.419-430
    • /
    • 2021
  • Remote sensing techniques using drone-based multispectral image were studied for fast and two-dimensional monitoring of algal blooms in the river. Drone is anticipated to be useful for algal bloom monitoring because of easy access to the field, high spatial resolution, and lowering atmospheric light scattering. In addition, application of multispectral sensors could make image processing and analysis procedures simple, fast, and standardized. Spectral indices derived from the active spectrum of photosynthetic pigments in terrestrial plants and phytoplankton were tested for estimating chlorophyll-a concentrations (Chl-a conc.) from drone-based multispectral image. Spectral indices containing the red-edge band showed high relationships with Chl-a conc. and especially, 3-band model (3BM) and normalized difference chlorophyll index (NDCI) were performed well (R2=0.86, RMSE=7.5). NDCI uses just two spectral bands, red and red-edge, and provides normalized values, so that data processing becomes simple and rapid. The 3BM which was tuned for accurate prediction of Chl-a conc. in productive water bodies adopts originally two spectral bands in the red-edge range, 720 and 760 nm, but here, the near-infrared band replaced the longer red-edge band because the multispectral sensor in this study had only one shorter red-edge band. This index is expected to predict more accurately Chl-a conc. using the sensor specialized with the red-edge range.

A Study on Foreign Exchange Rate Prediction Based on KTB, IRS and CCS Rates: Empirical Evidence from the Use of Artificial Intelligence (국고채, 금리 스왑 그리고 통화 스왑 가격에 기반한 외환시장 환율예측 연구: 인공지능 활용의 실증적 증거)

  • Lim, Hyun Wook;Jeong, Seung Hwan;Lee, Hee Soo;Oh, Kyong Joo
    • Knowledge Management Research
    • /
    • v.22 no.4
    • /
    • pp.71-85
    • /
    • 2021
  • The purpose of this study is to find out which artificial intelligence methodology is most suitable for creating a foreign exchange rate prediction model using the indicators of bond market and interest rate market. KTBs and MSBs, which are representative products of the Korea bond market, are sold on a large scale when a risk aversion occurs, and in such cases, the USD/KRW exchange rate often rises. When USD liquidity problems occur in the onshore Korean market, the KRW Cross-Currency Swap price in the interest rate market falls, then it plays as a signal to buy USD/KRW in the foreign exchange market. Considering that the price and movement of products traded in the bond market and interest rate market directly or indirectly affect the foreign exchange market, it may be regarded that there is a close and complementary relationship among the three markets. There have been studies that reveal the relationship and correlation between the bond market, interest rate market, and foreign exchange market, but many exchange rate prediction studies in the past have mainly focused on studies based on macroeconomic indicators such as GDP, current account surplus/deficit, and inflation while active research to predict the exchange rate of the foreign exchange market using artificial intelligence based on the bond market and interest rate market indicators has not been conducted yet. This study uses the bond market and interest rate market indicator, runs artificial neural network suitable for nonlinear data analysis, logistic regression suitable for linear data analysis, and decision tree suitable for nonlinear & linear data analysis, and proves that the artificial neural network is the most suitable methodology for predicting the foreign exchange rates which are nonlinear and times series data. Beyond revealing the simple correlation between the bond market, interest rate market, and foreign exchange market, capturing the trading signals between the three markets to reveal the active correlation and prove the mutual organic movement is not only to provide foreign exchange market traders with a new trading model but also to be expected to contribute to increasing the efficiency and the knowledge management of the entire financial market.

Sea Fog Level Estimation based on Maritime Digital Image for Protection of Aids to Navigation (항로표지 보호를 위한 디지털 영상기반 해무 강도 측정 알고리즘)

  • Ryu, Eun-Ji;Lee, Hyo-Chan;Cho, Sung-Yoon;Kwon, Ki-Won;Im, Tae-Ho
    • Journal of Internet Computing and Services
    • /
    • v.22 no.6
    • /
    • pp.25-32
    • /
    • 2021
  • In line with future changes in the marine environment, Aids to Navigation has been used in various fields and their use is increasing. The term "Aids to Navigation" means an aid to navigation prescribed by Ordinance of the Ministry of Oceans and Fisheries which shows navigating ships the position and direction of the ships, position of obstacles, etc. through lights, shapes, colors, sound, radio waves, etc. Also now the use of Aids to Navigation is transforming into a means of identifying and recording the marine weather environment by mounting various sensors and cameras. However, Aids to Navigation are mainly lost due to collisions with ships, and in particular, safety accidents occur because of poor observation visibility due to sea fog. The inflow of sea fog poses risks to ports and sea transportation, and it is not easy to predict sea fog because of the large difference in the possibility of occurrence depending on time and region. In addition, it is difficult to manage individually due to the features of Aids to Navigation distributed throughout the sea. To solve this problem, this paper aims to identify the marine weather environment by estimating sea fog level approximately with images taken by cameras mounted on Aids to Navigation and to resolve safety accidents caused by weather. Instead of optical and temperature sensors that are difficult to install and expensive to measure sea fog level, sea fog level is measured through the use of general images of cameras mounted on Aids to Navigation. Furthermore, as a prior study for real-time sea fog level estimation in various seas, the sea fog level criteria are presented using the Haze Model and Dark Channel Prior. A specific threshold value is set in the image through Dark Channel Prior(DCP), and based on this, the number of pixels without sea fog is found in the entire image to estimate the sea fog level. Experimental results demonstrate the possibility of estimating the sea fog level using synthetic haze image dataset and real haze image dataset.

Estimation of Chlorophyll-a Concentration in Nakdong River Using Machine Learning-Based Satellite Data and Water Quality, Hydrological, and Meteorological Factors (머신러닝 기반 위성영상과 수질·수문·기상 인자를 활용한 낙동강의 Chlorophyll-a 농도 추정)

  • Soryeon Park;Sanghun Son;Jaegu Bae;Doi Lee;Dongju Seo;Jinsoo Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.655-667
    • /
    • 2023
  • Algal bloom outbreaks are frequently reported around the world, and serious water pollution problems arise every year in Korea. It is necessary to protect the aquatic ecosystem through continuous management and rapid response. Many studies using satellite images are being conducted to estimate the concentration of chlorophyll-a (Chl-a), an indicator of algal bloom occurrence. However, machine learning models have recently been used because it is difficult to accurately calculate Chl-a due to the spectral characteristics and atmospheric correction errors that change depending on the water system. It is necessary to consider the factors affecting algal bloom as well as the satellite spectral index. Therefore, this study constructed a dataset by considering water quality, hydrological and meteorological factors, and sentinel-2 images in combination. Representative ensemble models random forest and extreme gradient boosting (XGBoost) were used to predict the concentration of Chl-a in eight weirs located on the Nakdong river over the past five years. R-squared score (R2), root mean square errors (RMSE), and mean absolute errors (MAE) were used as model evaluation indicators, and it was confirmed that R2 of XGBoost was 0.80, RMSE was 6.612, and MAE was 4.457. Shapley additive expansion analysis showed that water quality factors, suspended solids, biochemical oxygen demand, dissolved oxygen, and the band ratio using red edge bands were of high importance in both models. Various input data were confirmed to help improve model performance, and it seems that it can be applied to domestic and international algal bloom detection.