• Title/Summary/Keyword: Predator prey model

Search Result 67, Processing Time 0.031 seconds

Food Web Models in Aquatic Ecosystems: Review (수생태계 먹이망 모델 고찰)

  • Young-Seuk Park;Kyung Ah Koo
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.4
    • /
    • pp.259-273
    • /
    • 2022
  • Interactions between species in a community are very complex, and they are visualized and analyzed through a food web in simple way. Food web is a network of species connected by trophic links showing energy flow from prey to predator. Various models were developed to characterize the food web in ecosystems. In this study, we classified food web models to static models such as Ecopath and dynamic models such as AQUATOX. We presented characteristics of several different types of food web models in each category, and reviewed their applications used in aquatic ecosystems. Finally, we presented issues to be considered to develop food web models.

The Predatory Behavior of Green Mirid Bug, Cytorhinus lividipennis Reuter, on Brown Planthopper Eggs in Different Temperature Conditions (온도에 따른 등검은황록장님노린재 (Cyrtorhinus lividipennis Reuter)의 벼멸구 알에 대한 포식습성)

  • ;;;K.L. Heong
    • Korean journal of applied entomology
    • /
    • v.34 no.3
    • /
    • pp.234-242
    • /
    • 1995
  • The functional responses of the female Cyrtorhinus lividipennis on brown planthopper (BPH), Nilaparvata lugens, eggs and their predation behavior were investigated at six temperature conditions; 20, 23, 26, 29, 32, and $35^{\circ}C$. C. lividipennis was found to prefer young BPH eggs, especially 3-day-old eggs the most. The functional responses for female C. lividipennis on BPH eggs fitted the Holling's Type-I true predator-prey Rogers' (1972) model at all temperatures tested except $35^{\circ}C$ at which the negative Th value was produced. With the temperature increased up to 32$^{\circ}C$, the instantaneous attacking rate(a) increased from 0.1923 at $20^{\circ}C$ to 0.5085 at $32^{\circ}C$, while the handling time (Th) was gradually decreased as low as 0.0151 at $32^{\circ}C$. C. lividipenis preferred the BPH eggs laid on the upper part of rice stem when the BPH egg density was high, but there was no significant difference in the preference when the egg density was low. The preference was more obvious in high temperature conditions such as above 29$^{\circ}C$.

  • PDF

Effect of Temperature on the Development and Oviposition of Minute Pirate Bug, Orius strigicollis (Hemiptera:Anthocoridae) (Orius strigicollis Poppius (Hemiptera:Anthocoridae)의 발육과 산란에 미치는 온도의 영향)

  • 김정환;김용헌;한만위;이관석;이정운
    • Korean journal of applied entomology
    • /
    • v.38 no.1
    • /
    • pp.29-33
    • /
    • 1999
  • Orius strgicollis Poppius is an endemic natural enemy of thrips recently found. To estimatethe optimum temperature for rearing in laboratory, development and oviposition of 0. strigicollis wasstudied at 15, 20, 25 and 30$^{\circ}$C with a 16L : 8D photoperiod and 60-80% RH. Cotton aphid, Aphisgossipyii, was supplied as prey. Total number of eggs laid per female ranged from 39.1 to 68.5 with thehighest at 25$^{\circ}$C. Adult longevity decreased as temperature increased, and the reverse was true for eggsurvivorship. Survivorship of larvae was 26.7,43.3, 76.7 and 46.7% at 15, 20, 25 and 30$^{\circ}$C, respectively.Duration of eggs and larvae at tested temperatures ranged from 3.4 days to 18.9 days and from 9.4 days to45.6 days, respectively. A linear regression model could describe development of the predator as afunction of temperature (R2=0.949-0.997). The lower developmental threshold temperatures for egg,larvae, and total immature stage were estimated to be 12.4, 11.4, and 11.6"C, respectively.6"C, respectively.vely.

  • PDF

Importance of the Mixotrophic Ciliate Myrionecta rubra in Marine Ecosystems (해양 생태계 내에서 혼합영양 섬모류 Myrionecta rubra의 중요성)

  • Myung, Geum-Og;Kim, Hyung-Seop;Jang, Keon-Gang;Park, Jong-Woo;Yih, Won-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.3
    • /
    • pp.178-185
    • /
    • 2007
  • Myrionecta rubra Jankowski 1976(=Mesodinium rubrum Lohmann 1908), a mixotrophic ciliate, is very common and often causes recurrent red tides in diverse marine environments. Since the report on the first laboratory strain of this species in 2000, papers on its novel ecological role and evolutionary importance have been high lighted. This review paper is prepared to promote the de novo recognition M. rubra as a marine mixotrophic species. M. rubra is a ciliate which is able to photosynthesize using plastids originated from cryptophyte (including Teleaulax sp. and Geminigera sp.) prey cells (i.e. kleptoplastidic ciliate). Recently, novel bacterivory of M. rubra was firstly reported. Thus, the nutritional modes of M. rubra include photosynthesis, bacterivory, and algivory. In turn, M. rubra was reported as the prey species of metazoan predators such as calanoid copepods, mysids, larvae of ctenophore and anchovy, and spats of bivalves. In addition, it was reported that dinoflagellate Dinophysis causing diarrhetic shellfish poisoning is one among the predators of M. rubra. Thus, M. rubra, a marine mixotrophic ciliate, may play a pivotal role as a common linking ciliate for the flow of energy and organic material in pelagic food webs.

A Study on the Introduction of Linear Programming Model into the Management of Korean Coastal and Offshore Fisheries (한국 연근해어업의 합리적 관리를 위한 LP모형의 도입방안에 관한 연구)

  • 박장일
    • The Journal of Fisheries Business Administration
    • /
    • v.25 no.1
    • /
    • pp.37-59
    • /
    • 1994
  • Many studies to cope with the present problems of Korean coastal and offshore fisheries has been performed, but these were done partly in necessities and general studies for Korean inshore and offshore fisheries are in early stage. Most of these studies adopted analytical way of approach for each fishery individually and they could not reflect the effect of correlated interaction among fisheries on the several common species/stocks, and thus optimal effort allocation was impossible. To consider general fisheries and optimal effort allocation among competing mixed species, a linear programming (LP) approach is applied in this study and introduced into 16 important inshore and offshore fisheries with 13 constraining species which were chosen by annual yield order. This study is not based on the biological interaction among species (i.e., prey - predator system) but the technological interaction between species and fishing efforts. For the application of LP model in these fisheries, the standardization of fishing efforts through different fishing gears could not be successful and a new way of effort standardization through CPUE for vessel tonnage was originated. Total standardized fishing effort on a particular species i, Ei, is computed as the linear summation of standardized fishing effort generated by each fishery j. That is, (equation omitted) where $f_{j}$ is the total vessel tonnage of fishery j and aij is the coefficients contributing to the standardized fishing effort per ton for species i taken in fishery j. The total fishing effort level on species i due to both directed fishing and by - catch can thus be accounted in the aij's. Optimal effort allocation among the j fisheries may be considered a minimizing problem (minimize $\Sigma$ $f_{j}$), subject to the constraints that standardized fishing effort levels on particular species are maintained at, above, and below certain predefined levels. Fishing effort goals for individual species can be based on various biological and/or economic criteria, i.e., fishing effort level generating maximum sustainable yield and/or maximum economic yield. But in this study the $F_{0.1}$ criteria which was accepted as an approximate level for $F_{mey}$ by Outland and Boerema's (1973) study. The findings of this study are, (1) LP model can be applied to the Korean inshore and offshore fisheries giobally. (2) Through a new way of combining multiple different fisheries' efforts for a particular species together generating standardized fishing effort, Schaefer curve could be applied to the complex system successfully. (3) The results of this study for total reduction scale were mostly the same as those of prior studies, but different much from the individual scales of reduction. This study showed the necessities for exploitation of more concrete parameters to put into consideration of profitability of fisheries and social factors, and this model can be modified according to the actual constraints. Also, considering the age structure of stocks, this model can be developed into better one for better fisheries management.ent.

  • PDF

Effects of Climate-Changes on Patterns of Seasonal Changes in Bird Population in Rice Fields using a Prey-Predator Model (포식자-피식자 모델을 이용하여 기후변화가 논습지를 이용하는 조류 개체군 동태에 미치는 영향 예측)

  • Lee, Who-Seung
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.4
    • /
    • pp.294-303
    • /
    • 2013
  • BACKGROUND: It is well known that rice-fields can provide excellent foraging places for birds including seasonal migrants, wintering, and breeding and hence the high biodiversity of rice-fields may be expected. However, how environmental change including climate-changes on life-history and population dynamics in birds on rice-fields has not been fully understood. In order to investigate how climate-change affects population migratory patterns and migration timing, I modeled a population dynamics of birds in rice-fields over a whole year. METHODS AND RESULTS: I applied the Lotka-Volterra equation to model the population dynamics of birds that have been foraging/visiting rice-fields in Korea. The simple model involves the number of interspecific individuals and temperature, and the model parameters are periodic in time as the biological activities related to the migration, wintering and reproduction are seasonal. As results, firstly there was a positive relationship between the variation of seasonal population sizes and temperature change. Secondly, the reduced lengths of season were negatively related to the population size. Overall, the effects of the difference of lengths of season on seasonal population dynamics were higher than the effects of seasonal temperature change. CONCLUSION(S): Climate change can alter population dynamics of birds in rice-fields and hence the variation may affect the fitness, such as reproduction, survival and migration. The unstable balances of population dynamics in birds using paddy rice field as affected by climate change can reduce the population growth and species diversity in rice fields. The results suggest that the agricultural production is partly affected by the unstable balance of population in birds using rice-fields.

Interaction between Invertebrate Grazers and Seaweeds in the East Coast of Korea (동해안 조식성 무척추동물과 해조류 간 상호작용)

  • Yoo, J.W.;Kim, H.J.;Lee, H.J.;Lee, C.G.;Kim, C.S.;Hong, J.S.;Hong, J.P.;Kim, D.S.
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.3
    • /
    • pp.125-132
    • /
    • 2007
  • We estimated the distribution of predator-prey interaction strengths for 12 species of herbivores (including amphipods, isopods, gastropods, and sea urchins) and made a regression model that may be applicable to other species. Laboratory experiments were used to determine per capita grazing rate (PCGR; g seaweeds/individual/day). Relationship between the biomass of individual grazers and fourth-root transformed PCGR was fitted to power curve ($y=0.2310x^{0.3290}$, r=0.8864). This finding supported that the grazing efficiency was not even as individual grazers increase in size (biomass). Therefore, the biomass-normalized PCGR was estimated and revealed that smaller size herbivores were more effective grazers. Grazing impact considering density of each taxon was calculated. The sea hare Aplysia kurodai had greatest grazing impact on the seaweed bed and the sea urchin Strongylocentrotus nudus and S. intermedius were ranked in descending order of the impact. The amount of seaweed grazed by the amphipod Elasmopus sp. (>4,000 $ind./m^2$) and Jassa falcata (>2,000 $ind./m^2$) were 3.435 and $1.697mg/m^2/day$ respectively. The combined grazing amount of herbivores was $5,045mg/m^2/day$ in the seaweed bed. Although sea hare and sea urchin had strong impacts on seaweeds, the effects of dense, smaller species could not be seen as negligible. Surprisingly, the calculated grazing potential of sea urchins with a mean density of 3 $ind./m^2$ exceeded the mean production of seaweed cultured in domestic coastal waters in Korea (ca., 5 ton/ha). Small crustaceans were also expected to consume up to 16% of the seaweed production if their densities were rising under weak predation conditions. Considering that the population density of herbivores are strongly controlled by fish, human interference like overfishing may have strong negative effects on persistence of seaweeds communities.