Browse > Article
http://dx.doi.org/10.11614/KSL.2022.55.4.259

Food Web Models in Aquatic Ecosystems: Review  

Young-Seuk Park (Department of Biology, Kyung Hee University)
Kyung Ah Koo (Division for Natural Environment, Korea Environment Institute)
Publication Information
Abstract
Interactions between species in a community are very complex, and they are visualized and analyzed through a food web in simple way. Food web is a network of species connected by trophic links showing energy flow from prey to predator. Various models were developed to characterize the food web in ecosystems. In this study, we classified food web models to static models such as Ecopath and dynamic models such as AQUATOX. We presented characteristics of several different types of food web models in each category, and reviewed their applications used in aquatic ecosystems. Finally, we presented issues to be considered to develop food web models.
Keywords
aquatic ecosystem; foodweb; ecological model; static model; dynamic model;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Yoon, C., H.-P. Rhee and Y. Son. 2017. Applicability study of ecological impact assessment using AQUATOX model in Paldang Reservoir, South Korea. Desalination and Water Treatment 60: 39-47.   DOI
2 Zeng, Y., W. Yang and Y. Zhao. 2022. Ecological impact of polycyclic aromatic hydrocarbons on Baiyangdian Lake based on an ecosystem model. Ecological Modelling 472:110103.
3 Zhang, C.I. and S.C. Yoon. 2003, Effects of climatic regime shift on the structure of marine ecosystem in the Southwestern East Sea during the 1970s. Korean Journal of Fisheries and Aquatic Sciences 36: 389-401.   DOI
4 Zhang, C.-I., Y.-I. Seo and H.-J. Kang. 2017. Estimation of the exploitable carrying capacity in the Korean Water of the East China Sea. Journal of Fisheries and Marine Sciences Education 29(2): 513-525.   DOI
5 Zhang, C.I., Y.I. Seo, H.J. Kang and J.H. Lim. 2019. Exploitable carrying capacity and potential biomass yield of sectors in the East China Sea, Yellow Sea, and East Sea/Sea of Japan large marine ecosystems. Deep-Sea Research Part II: Topical Studies in Oceanography 163: 16-28.    DOI
6 Akkoyunlu, A. and Y. Karaaslan. 2015. Assessment of improvement scenario for water quality in Mogan Lake by using the AQUATOX Model. Environmental Science and Pollution Research 22: 14349-14357, https://doi.org/10.1007/s11356-015-5027-0   DOI
7 Alcantara, J.M. and P.J. Rey. 2012. Linking topological structure and dynamics in ecological networks. The American Naturalist 180: 186-199, https://doi.org/10.1086/666651.   DOI
8 Belgrano, A., J.A. Dunne and J. Bascompte. 2009. Food Webs, p. 596-603. In: Encyclopedia of Ocean Sciences(Steele, J.H., ed.). Academic Press, Oxford, https://doi.org/10.1016/B978-012374473-9.00780-3   DOI
9 Bhele, U., B. Oglu, T. Feldmann, P. Bernotas, H. Agasild, P. Zingel, P. Noges, T. Noges and F. Cremona. 2022. Modelling how bottom-up and top-down processes control the major functional groups of biota in a large temperate shallow lake. Inland Waters 12: 368-382, https://doi.org/10.1080/20442041.2022.2031813   DOI
10 Brett, M.T. and C.R. Goldman. 1996. A meta-analysis of the freshwater trophic cascade. Proceedings of the National Academy of Sciences 93(15): 7723-7726, https://doi.org/10.1073/pnas.93.15.7723   DOI
11 Chea, R., C. Guo, G. Grenouillet and S. Lek, S. 2016. Toward an ecological understanding of a flood-pulse system lake in a tropical ecosystem: Food web structure and ecosystem health. Ecological Modelling 323: 1-11.   DOI
12 Buzhdygan, O.Y., B.C. Patten, C. Kazanci, Q. Ma and S.S. Rudenko. 2012. Dynamical and system-wide properties of linear flow-quantified food webs. Ecological Modelling 245: 176-184.   DOI
13 Buzhdygan, O.Y., S.S. Rudenko, C. Kazanci and B.C. Patten. 2016. Effect of invasive black locust (Robinia pseudoacacia L.) on nitrogen cycle in floodplain ecosystem. Ecological Modelling 319: 170-177.   DOI
14 Campfens, J. and D. Mackay. 1997. Fugacity-based model of PCB bioaccumulation in complex aquatic food webs. Environmental Science & Technology 31: 577-583, https://doi.org/10.1021/es960478w   DOI
15 Chiu, G.S. 2013. Food web modeling. In: Encyclopedia of Environmetrics(El-Shaarawi, A.-H. and W. Piegorsch, eds.). John Wiley & Sons Ltd: Chichester, UK, https://doi.org/10.1002/9780470057339.vnn156   DOI
16 Cho, M. 2016. Prediction of Foodweb Dynamics in Reservoir Aquatic Ecosystem Using AQUATOX. Ph.D. Thesis, Konkuk University, Seoul.
17 Christensen, V. 2009. Chapter 5. Ecopath with Ecosim: linking fisheries and ecology. p. 55-70 In: WIT Transactions on State of the Art in Science and Engineering, Vol 34. WIT Press, https://doi.org/10.2495/978-1-84564-207-5/05   DOI
18 Christensen, V., C.J. Walters and D. Pauly. 2005. Ecopath with Ecosim: a User's Guide. Fisheries Centre, University of British Columbia, Vancouver. November 2005 edition, 154p (available online at www.ecopath.org)
19 Christensen, V. and D. Pauly. 1992. ECOPATH II - a software for balancing steady-state ecosystem models and calculating network characteristics. Ecological Modelling 61: 169-185.   DOI
20 Christensen, V. and C.J. Walters. 2004. Ecopath with Ecosim: methods, capabilities and limitations. Ecological Modelling 172: 109-139.   DOI
21 Coll, M., I. Palomera, S. Tudela and F. Sarda. 2006. Trophic flows, ecosystem structure and fishing impacts in the South Catalan Sea, Northwestern Mediterranean. Journal of Marine Systems 59: 63-96.   DOI
22 Dodson, S.I., S.E. Arnott and K.L. Cottingham. 2000. The Relationship in lake communities between primary productivity and species richness. Ecology 81: 2662-2679.   DOI
23 Downing, A.S., E.H. van Nes, J.H. Janse, F. Witte, I.J.M. Cornelissen, M. Scheffer and W.M. Mooij. 2012. Collapse and reorganization of a food web of Mwanza Gulf, Lake Victoria. Ecological Applications 22: 229-239.   DOI
24 Fulton, E.A., A.D.M. Smith, D.C. Smith and P. Johnson. 2014. An integrated approach is needed for ecosystem based fisheries management: Insights from ecosystem-level management strategy evaluation. PLoS One 9: e84242.
25 Fulton, E.A., A.D.M. Smith and C.R. Johnson. 2003. Effect of complexity on marine ecosystem models. Marine Ecology Progress Series 253: 1-16.   DOI
26 Gotelli, N.J. and A.M. Ellison. 2006. Food-web models predict species abundances in response to habitat change. PLOS Biology 4, e324.
27 Gredelj, A., A. Barausse, L. Grechi and L. Palmeri. 2018. Deriving predicted no-effect concentrations (PNECs) for emerging contaminants in the river Po, Italy, using three approaches: Assessment factor, species sensitivity distribution and AQUATOX ecosystem modelling. Environment International 119: 66-78.   DOI
28 Guo, C.B., S.W. Ye, S. Lek, J.S. Liu, T.L. Zhang, J. Yuan, Z.J. Li. 2013. The need for improved fishery management in a shallow macrophytic lake in the Yangtze River basin: Evidence from the food web structure and ecosystem analysis. Ecological Modelling 267: 138-147.   DOI
29 Hoang, T., D. Nguyen, J. Lee, K. Han and T. Lee. 2021. Development of Nakdong river estuary ecosystem model using AQUATOX model. Journal of Korean Society of Environmental Engineers 43: 51-65.   DOI
30 Heath, M.R., D.C. Speirs, I. Thurlbeck and R.J. Wilson. 2021. Strath-E2E2: An r package for modelling the dynamics of marine food webs and fisheries. Methods in Ecology and Evolution 12: 280-287.   DOI
31 Hu, F., K. Bolding, J. Bruggeman, E. Jeppesen, M.R. Flindt, L. van Gerven, J.H. Janse, A.B.G. Janssen, J.J. Kuiper, W.M. Mooij and D. Tolle. 2016. FABM-PCLake - linking aquatic ecology with hydrodynamics. Geoscientific Model Development 9: 2271-2278.   DOI
32 Jang, S.-H. and J.-H. Lee. 2011. Comparison of trophic structures and energy flows using the Ecopath model in the Lake Namyang and the lower reaches of the Nakdong river. Korean Journal of Environment and Ecology 25: 747-759.
33 Jang, S.H., C.I. Zhang, J.H. Na, S.W. Kim, K.G. An, J.J. Lee and J.H. Lee. 2008. A analysis of trophic structure in Lake Namyang using the Ecopath modelling. Korean Journal Limnology 41: 144-154.
34 Janse, J.H. 1998. A model of ditch vegetation in relation to eutrophication. Water Science and Technology 37: 139-149.   DOI
35 Janse, J.H., L.N. De Senerpont Domis, M. Scheffer, L. Lijklema, L. Van Liere, M. Klinge and W.M. Mooij. 2008. Critical phosphorus loading of different types of shallow lakes and the consequences for management estimated with the ecosystem model PCLake. Limnologica 38: 203-219.   DOI
36 Janssen, A.B.G., V.C.L. de Jager, J.H. Janse, X. Kong, S. Liu, Q. Ye and W.M. Mooij. 2017. Spatial identification of critical nutrient loads of large shallow lakes: Implications for Lake Taihu (China). Water Research 119: 276-287.   DOI
37 Kazanci, C. 2007. EcoNet: A new software for ecological modeling, simulation and network analysis. Ecological Modelling 208: 3-8.   DOI
38 Janssen, A.B.G., S. Teurlincx, A.H.W. Beusen, M.A.J. Huijbregts, J. Rost, A.M. Schipper, L.M.S. Seelen, W.M. Mooij and J.H. Janse. 2019. PCLake+: A process-based ecological model to assess the trophic state of stratified and non-stratified freshwater lakes worldwide. Ecological Modelling 396: 23-32.   DOI
39 Ji, C.W., D.-S. Lee, D.-Y., Lee, I.-S. Kwak and Y.-S. Park. 2020. Analysis of food resources of 45 fish species in freshwater ecosystems of South Korea (based on literature data analysis). Korean Journal of Ecology and Environment 53: 311-323.   DOI
40 Kaplan, I.C., P.S. Levin, M. Burden and E.A. Fulton. 2010. Fishing catch shares in the face of global change: A framework for integrating cumulative impacts and single species management. Canadian Journal Fisheries and Aquatic Sciences 67: 1968-1982.   DOI
41 Kim, H.C., J.K. Lee, M.H. Kim, B.-M. Choi, I.-S. Seo and J.H. Na. 2018. Analysis of trophic structure and energy flows in the Uljin marine ranching area, Korean East Sea. Journal of the Korean Society of Marine Environment and Safety 24: 750-763.   DOI
42 Kong, X., Q. He, B. Yang, W. He, F. Xu, A.B.G. Janssen, J.J. Kuiper, L.P.A. van Gerven, N. Qin, Y. Jiang, W. Liu, C. Yang, Z. Bai, M. Zhang, F. Kong, J.H. Janse, W.M. Mooij. 2017. Hydrological regulation drives regime shifts: evidence from paleolimnology and ecosystem modeling of a large shallow Chinese lake. Global Change Biology 23: 737-754.   DOI
43 Kong, X.Z., F.L. Xu, W. He, W.X. Liu and B. Yang. 2016. Chapter 4 - Steady State Models. p. 65-89. In: Ecological Model Types(Jorgensen, S.E. ed.). Elsevier, Amsterdam.
44 Lee, T., T. Hoang, D. Nguyen and K. Han. 2021. Simulating the gross primary production and ecosystem respiration of estuarine ecosystem in Nakdong estuary with AQUATOX. Journal of the Korean Geo-Environmental Society 22: 15-29.
45 Kwak, I.-S., Y.-S. Park and K.-H. Chang. 2021. Application and utilization of environmental DNA technology for biodiversity in water ecosystems. Korean Journal of Ecology and Environment 54: 151-155.   DOI
46 Lee, M.W. 2014. Ecosystem-base Stock Assessment and Fisheries Management in the West Coast of Korea. Doctoral Dissertation, Pukyong National University, Busan.
47 Lee, S.I. and C.I. Zhang. 2018. Evaluation of the effect of marine ranching activities on the Tongyeong marine ecosystem. Ocean Science Journal 53: 557-582.   DOI
48 Lei, B., S. Huang, M. Qiao, T. Li and Z. Wang. 2008. Prediction of the environmental fate and aquatic ecological impact of nitrobenzene in the Songhua River using the modified AQUATOX model. Journal of Environmental Sciences (China) 20: 769-777.   DOI
49 Li, X., A.B.G. Janssen, J.J.M. de Klein, C. Kroeze, M. Strokal, L. Ma and Y. Zheng. 2019. Modeling nutrients in Lake Dianchi (China) and its watershed. Agricultural Water Management 212: 48-59.
50 Link, J.S., E.A. Fulton and R.J. Gamble. 2010. The Northeast US application of ATLANTIS: An full system model exploring marine ecosystem dynamics in a living marine resource management context. Progress in Oceanography 87: 214-234.   DOI
51 Lombardo, A., A. Franco, A. Pivato and A. Barausse. 2015. Food web modeling of a river ecosystem for risk assessment of down-the-drain chemicals: A case study with AQUATOX. Science of The Total Environment 508: 214-227.   DOI
52 Lucey, S.M., S.K. Gaichas and K.Y. Aydin. 2020. Conducting reproducible ecosystem modeling using the open source mass balance model Rpath. Ecological Modelling 427: 109057.
53 Oh, H.J., Y.-J. Chae, Y. Choi, D. Ku, Y.-J. Heo, I.-S. Kwak, H. Jo, Y.-S. Park, K.-H. Chang and H.-W. Kim. 2021. Review and suggestions for applying DNA sequencing to zooplankton researches: from taxonomic approaches to biological interaction analysis. Korean Journal of Ecology and Environment 54: 156-169.   DOI
54 Matson, P.A. and M.D. Hunter. 1992, Special feature: The relative contributions to top-down and bottom-up forces in population and community ecology. Ecology 73: 723-723.   DOI
55 Meng, J.-N., H. Fang, L. Huang, G. He, X. Liu, C. Xu, X. Wu and D. Scavia. 2022. Multidimensional ecosystem assessment of Poyang Lake under anthropogenic influences. Ecological Modelling 473: 110134.
56 NIER (National Institute of Environment Research) 2018. Studies on the Availability of Foodweb Model to Predict Stream Aquatic Ecosystem Changes. National Institute of Environment Research, Incheon.
57 Ortega-Cisneros, K., K. Cochrane and E.A. Fulton. 2017. An Atlantis model of the southern Benguela upwelling system: Validation, sensitivity analysis and insights into ecosystem functioning. Ecological Modelling 355: 49-63.   DOI
58 Ortega-Cisneros, K., E. Weigum, R. Chalmers, S. Grusd, A.T. Lombard and L. Shannon. 2022. Supporting marine spatial planning with an ecosystem model of Algoa Bay, South Africa. African Journal of Marine Science 44:189-204.   DOI
59 Park, R.A. and J.S. Clough. 2014. AQUATOX (RELEASE 3.1 Plus) Modeling Environmental Fate and Ecological Effects in Aquatic Ecosystems, Vol. 2, EPA. Technical Documentation.
60 Paves, H.J. and H.E. Gonzalez. 2008. Carbon fluxes within the pelagic food web in the coastal area off Antofagasta (23 S), Chile: The significance of the microbial versus classical food webs. Ecological Modelling 212: 218-232.   DOI
61 Rashleigh, B., M.C. Barber and D.M. Walters. 2009. Foodweb modeling for polychlorinated biphenyls (PCBs) in the Twelvemile Creek Arm of Lake Hartwell, South Carolina, USA. Ecological Modelling 220: 254-264.   DOI
62 Polis, G.A. and D.R. Strong. 1996. Food web complexity and community dynamics. The American Naturalist 147: 813-846.   DOI
63 Polovina, J.J. 1984. Model of coral reef ecosystem. I. The Eopath model and its application to French Frigate Shoals. Coral Reefs 3: 1-11.   DOI
64 Rashleigh, B. 2003. Application of AQUATOX, a Process-Based Model for Ecological Assessment, to Contentnea Creek in North Carolina. Journal of Freshwater Ecology 18: 515-522, https://doi.org/10.1080/02705060.2003.9663992   DOI
65 Rehren, J., M. Coll, N. Jiddawi, L.C. Kluger, O. Omar, V. Christensen, M.G. Pennino and M. Wolff. 2022. Evaluating ecosystem impacts of gear regulations in a data-limited fishery-comparing approaches to estimate predator-prey interactions in Ecopath with Ecosim. Ices Journal of Marine Science 79: 1624-1636.   DOI
66 Rhee, H.-P. 2012. Ecological Impact Assessment Using AQUATOX Model in Paldang Reservoir. Ph.D. Thesis, Konkuk University, Seoul.
67 Salvadori, L., D. Moccia, L. Melis, G. Folegnani, A. Pusceddu, A. Carucci and S. Ferrari. 2022. Using the AQUATOX model to forecast water bodies quality status response to environmental perturbations. EPJ Web Conf. 269, 01051.
68 Schnedler-Meyer, N.A., T.K. Andersen, F.R.S. Hu, K. Bolding, A. Nielsen and D. Trolle. 2022. Water ecosystems tool (WET) 1.0 - A new generation of flexible aquatic ecosystem model. Geoscientific Model Development 15: 3861-3878.   DOI
69 Smith, T.M. and R.L. Smith. 2021. Elements of Ecology. Pearson, Boston.
70 Stewart, T.J. and W.G. Sprules. 2011. Carbon-based balanced trophic structure and flows in the offshore Lake Ontario food web before (1987-1991) and after (2001-2005) invasion-induced ecosystem change. Ecological Modelling 222: 692-708.   DOI
71 Szalaj, D., A. Silva, P. Re and H. Cabral. 2022. Predictions of sardine and the Portuguese continental shelf ecosystem dynamics under future fishing, forced-biomass and SST scenarios. Marine Pollution Bulletin 178: https://doi.org/10.1016/j.marpolbul.2022.113594   DOI
72 Testa, G., S. Neira, R. Giesecke and A. Pinones. 2022. Projecting environmental and krill fishery impacts on the Antarctic Peninsula food web in 2100. Progress in Oceanography 206, https://doi.org/10.1016/j.pocean.2022.102862   DOI
73 Thapanand, T., J. Moreau, T. Jutagate, P. Wongrat, T. Lekchon-layut, C. Meksumpun, S. Janekitkarn, A. Rodloi, V. Dulyapruk and L. Wongrat. 2007. Towards possible fishery management strategies in a newly impounded manmade lake in Thailand. Ecological Modelling 204: 143-155.   DOI
74 Villanueva, M.C., P. Laleye, J.J. Albaret, R. Lae, L.T. de Morais and J. Moreau. 2006. Comparative analysis of trophic structure and interactions of two tropical lagoons. Ecological Modelling 197: 461-477.   DOI
75 Woo, S., Y. Kim, W. Kim, S. Kim and S. Kim. 2021. Development of water quality and aquatic ecosystem model for Andong lake using SWAT-WET. Journal of Korea Water Resources Association 54(9): 719-730.
76 Yang, Y. and H. Chen. 2013. Assessing impacts of flow regulation on trophic interactions in a wetland ecosystem. Journal of Environmental Informatics 21: 63-71.   DOI
77 Yeom, J., I. Kim, M. Kim, K. Cho and S.D. Kim. 2020. Coupling of the AQUATOX and EFDC models for ecological impact assessment of chemical spill scenarios in the Jeonju river, Korea. Biology 9: 340.