• Title/Summary/Keyword: Precut

Search Result 10, Processing Time 0.018 seconds

Temperature Effect on Tensile Strength of Filled Natural Rubber Vulcanizates (가황 천연고무의 인장강도에 미치는 온도의 영향)

  • Ko, Young-Chon;Park, Byung-Ho
    • Elastomers and Composites
    • /
    • v.36 no.4
    • /
    • pp.255-261
    • /
    • 2001
  • This study was related with the effect of elevated temperature on the tensile strength of edge-cut samples. There was a different tensile strength behavior of uncut samples and pre-cut samples under different test temperatures. Tensile strength of uncut sample decreases with increasing test temperature. When pro-cut size(C) is larger than critical cut size($C_{cr}$), tensile strength or pre-cut specimen at $80^{\circ}C$ is higher than that of pre-cut specimen at room temperature (RT). Test specimens under $80^{\circ}C$ condition exhibited more secondary cracks at the crack tip region compared to room temperature conditions. However, secondary cracks of pre-cut specimens are not clearly developed at $110^{\circ}C$. Differences in tensile strength induced by different test temperature seem to be responsible for the strain-induced crystallization and micro-cracking patterns.

  • PDF

Shearing characteristics of slip zone soils and strain localization analysis of a landslide

  • Liu, Dong;Chen, Xiaoping
    • Geomechanics and Engineering
    • /
    • v.8 no.1
    • /
    • pp.33-52
    • /
    • 2015
  • Based on the Mohr-Coulomb failure criterion, a gradient-dependent plastic model that considers the strain-softening behavior is presented in this study. Both triaxial shear tests on conventional specimen and precut-specimen, which were obtained from an ancient landslide, are performed to plot the post-peak stress-strain entire-process curves. According to the test results of the soil strength, which reduces from peak to residual strength, the Mohr-Coulomb criterion that considers strain-softening under gradient plastic theory is deduced, where strength reduction depends on the hardening parameter and the Laplacian thereof. The validity of the model is evaluated by the simulation of the results of triaxial shear test, and the computed and measured curves are consistent and independent of the adopted mesh. Finally, a progressive failure of the ancient landslide, which was triggered by slide of the toe, is simulated using this model, and the effects of the strain-softening process on the landslide stability are discussed.

Analytic Factor Effects Analysis of Bending Process of Double Pipe for Tube-Hydroforming using Experimental Design (실험계획법을 이용한 튜브 하이드로 포밍용 이중관 벤딩 공정의 해석적 요인 효과 분석)

  • Shim, D.S.;Jung, C.G.;Seong, D.Y.;Yang, D.Y.;Park, S.H.;Kim, K.H.;Choi, H.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.310-313
    • /
    • 2007
  • This paper covers finite element simulations to evaluate the bending limit of double pipe for tube-hydroforming. The tube-hydroforming process starts with a straight precut tube. The tube is often prebent in a rotary draw bending machine to fit the hydroforming tool. During the bending the tube undergoes significant deformation. So forming defects such as wrinkling, thinning and flattening are generated in the tube. Consequently we analyzed the effect of process parameters in rotary draw bending process and searched the optimized combination of process parameters to minimize the forming defects using orthogonal arrays. The characteristic to evaluate the effects of the process parameters is the bending angle which wrinkling is generated, we define the bending angle at that time as bending limit. Of many process parameters, the process parameters of the bending process such as gab between inner and outer tube, boosting force, dimensions of mandrel were analyzed. And we observed the deformation modes of bent double pipe at specific bending angle in each parameter combination.

  • PDF

A study of tunnel face reinforcement (터널 막장보강효과에 대한 연구)

  • Peila, Daniele;Oreste, Pier Paolo;Pelizza, Sebastiano;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.3
    • /
    • pp.259-267
    • /
    • 2004
  • The practice of introducing and grouting reinforced fiber glass pipes or bar into the core to be excavated to maintain stable the tunnel face during excavation has been applied to many tunnels, where difficult geotechnical conditions are present, with good results in terms of safety and speed of works. This reinforcing technique, initially developed to be used jointly with the mechanical precut in clay, has been widely used with other geotechnical conditions as the only type of reinforcement or joined with other ground consolidation and/or reinforcement techniques (i.e. steel pipes or jet-grouting umbrella). At present same numerical researches have been carried out to find which are the real working conditions of the reinforcing elements but no final results have been obtained for the definition of the best design approaches. In this work the results of a three dimensional parametric numerical model is presented.

  • PDF

Evaluation of Stiffness Ratio of Wooden Mortise and Tenon Joint on Vertical Loading (수직 하중에 따른 목재 짜맞춤 접합부의 강성도 평가)

  • Park, Chun-Young;Lee, Jun-Jae;Kim, Gwang-Chul
    • Journal of the Korea Furniture Society
    • /
    • v.23 no.3
    • /
    • pp.290-297
    • /
    • 2012
  • Recently, interest in wooden construction have been growing by increasing needs and demands for eco-friendly and traditional wooden building(Hanok). Especially, Hanok has the technical development in manufacturing the mortise-tenon joint without fasteners(precut), so it could be called to modernization, industrialization and popularization. But the structural design and analysis of the structure were not regulated and had the difficulty to consider the variation of wooden member and to conduct the difficulty in the structural analysis and the design of the joint. In this study, the stiffness ratio of wooden mortise and tenon joint was evaluated according to the vertical loading, lintel and loading speed. The joint was distinguished in semi-rigid joint regardless of their factors. The stiffness ratio was 0.40 in vertical loading, 0.50 without vertical loading and 0.44 in horizontal loading with high speed. This study would be utilized to the structural analysis and design with structural analysis and design program.

  • PDF

Breeding of Panax ginseng and Plant Tissue Culture (고려 인삼의 육종파 조직배양)

  • 한창렬
    • Journal of Ginseng Research
    • /
    • v.1 no.1
    • /
    • pp.13-18
    • /
    • 1976
  • Production of Panax ginseng in Korea has been increased tremendously in the last two decades, the acreage and number of growers hating been spread across the country. Improvement of variety, on the other hand, has been seldom carried out during this period, rendering the ginseng growing risky and hazardous. Breeding work with such perennial crop as ginseng if rather time-consuming, and there are few genesources to start with. Authorities concerned with ginseng Production pay hwy little attention to breeding researches for nimbus of reasons. As this crop is cultivated over the entire area of Korea. Breeding work cannot be allowed to delay forth. In the precut article, improvement of ginseng was discussed from the view point of two different categories of brooding concept: (1) conventional breeding and (2) breeding based on the somatic tell genetics.

  • PDF

Novel NSM configuration for RC column strengthening-A numerical study

  • Gurunandan, M.;Raghavendra, T.
    • Computers and Concrete
    • /
    • v.27 no.5
    • /
    • pp.437-445
    • /
    • 2021
  • Retrofitting of structures has gained importance over the recent years. Particularly, Reinforced Cement Concrete (RCC) column strengthening has become a challenge to the structural engineers, owing to the risks and complexities involved in it. There are several methods of RCC column strengthening viz. RCC jacketing, steel jacketing and Fiber Reinforced Polymer (FRP) wrapping etc., FRP wrapping is the most promising alternative when compared to the others. The large research database shows FRP wrapping, through lateral confinement, improves the axial load carrying capacity of the columns under concentric loading. However, its confining efficiency reduces under eccentric loading. Hence a relative newer technique called Near Surface Mounting (NSM), in which Carbon FRP (CFRP) strips are epoxy grouted to the precut grooves in the cover concrete of the columns, has been thrust domain of research. NSM technique strengthens the column nominally under concentric load case while significantly under eccentric case. A novel configuration of NSM in which the vertical NSM (VNSM) strips are being connected by horizontal NSM (HNSM) strips was numerically investigated under both concentric and eccentric loading. It was found that the configuration with 6 HNSM strips performed better under eccentric loading than under concentric loading, while the configuration with 3 HNSM strips performed better under concentric loading than under eccentric loading. Hence an optimum of 4 HNSM strips is recommended as strengthening measure for the given column specifications. It was also found that Aluminum alloy cannot be used instead of CFRP in NSM applications owing to its lower mechanical properties.

A New Perspective on the Advanced Microblade Cutting Method for Reliable Adhesion Measurement of Composite Electrodes

  • Song, Jihun;Shin, Dong Ok;Byun, Seoungwoo;Roh, Youngjoon;Bak, Cheol;Song, Juhye;Choi, Jaecheol;Lee, Hongkyung;Kwon, Tae-Soon;Lee, Young-Gi;Ryou, Myung-Hyun;Lee, Yong Min
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.227-236
    • /
    • 2022
  • The microblade cutting method, so-called SAICAS, is widely used to quantify the adhesion of battery composite electrodes at different depths. However, as the electrode thickness or loading increases, the reliability of adhesion values measured by the conventional method is being called into question more frequently. Thus, herein, a few underestimated parameters, such as friction, deformation energy, side-area effect, and actual peeing area, are carefully revisited with ultrathick composite electrodes of 135 ㎛ (6 mAh cm-2). Among them, the existence of side areas and the change in actual peeling area are found to have a significant influence on measured horizontal forces. Thus, especially for ultrahigh electrodes, we can devise a new SAICAS measurement standard: 1) the side-area should be precut and 2) the same actual peeling area must be secured for obtaining reliable adhesion at different depths. This guideline will practically help design more robust composite electrodes for high-energy-density batteries.

Safety and feasibility of opening window fistulotomy as a new precutting technique for primary biliary access in endoscopic retrograde cholangiopancreatography

  • Yasuhiro Kuraishi;Kazuo Hara;Shin Haba;Takamichi Kuwahara;Nozomi Okuno;Takafumi Yanaidani;Sho Ishikawa;Tsukasa Yasuda;Masanori Yamada;Nobumasa Mizuno
    • Clinical Endoscopy
    • /
    • v.56 no.4
    • /
    • pp.490-498
    • /
    • 2023
  • Background/Aims: Post-endoscopic retrograde cholangiopancreatography pancreatitis (PEP) is the most common and serious complication of endoscopic retrograde cholangiopancreatography. To prevent this event, a unique precutting method, termed opening window fistulotomy, was performed in patients with a large infundibulum as the primary procedure for biliary cannulation, whereby a suprapapillary laid-down H-shaped incision was made without touching the orifice. This study aimed to assess the safety and feasibility of this novel technique. Methods: One hundred and ten patients were prospectively enrolled in this study. Patients with a papillary roof size ≥10 mm underwent opening window fistulotomy for primary biliary access. In addition, the incidence of complications and success rate of biliary cannulation were evaluated. Results: The median size of the papillary roof was 6 mm (range, 3-20 mm). Opening window fistulotomy was performed in 30 patients (27.3%), none of whom displayed PEP. Duodenal perforation was recorded in one patient (3.3%), which was resolved by conservative treatment. The cannulation rate was high (96.7%, 29/30 patients). The median duration of biliary access was 8 minutes (range, 3-15 minutes). Conclusions: Opening window fistulotomy demonstrated its feasibility for primary biliary access by achieving great safety with no PEP complications and a high success rate for biliary cannulation.

Modular Building for Urban Disaster Housing: Case Study of Urban Post-Disaster Housing Prototype in New York

  • Ford, George;Ahn, Yong Han;Choi, Don Mook
    • Fire Science and Engineering
    • /
    • v.28 no.6
    • /
    • pp.82-89
    • /
    • 2014
  • Disasters that destroy homes and infrastructure and cause significant financial damage are becoming more common as population centers grow. In addition, several natural disasters have resulted in a major loss of life and created countless refugees due to damage to housing. After major catastrophic disasters, it is very important that the government agencies respond to post-disaster housing issues and provide resources such as temporary housing before the full rehabilitation and reconstruction of destroyed and damaged housing. To provide affordable temporary housing for residents who may lose their homes as the result of a catastrophic disaster including storms, government agencies must develop a post-disaster housing prototype. In general, government agencies should explore several different forms of factory-built single-story, single family housing, such as modular homes, panelized homes, and precut homes. In urban cities including New York and Seoul, it is very important to provide housing which supports the demand for higher-density living spaces than single-family homes or trailers typically available due to the high population density and the desire to resettle as many residents as possible in their former neighborhoods. This study identified the urban post-disaster housing prototypes that may provide higher density housing with high quality living spaces, high air quality, and energy efficiency as well as rapid deployment. A case study of "Urban Post-Disaster Housing Prototype Program in New York" was conducted through a detailed interview process with a designer, engineer, contractor, the Office of Emergency Management (OEM) in New York, the U.S. Army Corps of Engineers (USACE), and temporary occupants. An appropriate disaster housing program that can provide living spaces for victims of disasters that keeps residents in their community and allows them to live and work in their neighborhoods was developed.