Browse > Article
http://dx.doi.org/10.33961/jecst.2021.00976

A New Perspective on the Advanced Microblade Cutting Method for Reliable Adhesion Measurement of Composite Electrodes  

Song, Jihun (Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST))
Shin, Dong Ok (Intelligent Sensors Research Section, Electronics and Telecommunications Research Institute (ETRI))
Byun, Seoungwoo (Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST))
Roh, Youngjoon (Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST))
Bak, Cheol (Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST))
Song, Juhye (Intelligent Sensors Research Section, Electronics and Telecommunications Research Institute (ETRI))
Choi, Jaecheol (Intelligent Sensors Research Section, Electronics and Telecommunications Research Institute (ETRI))
Lee, Hongkyung (Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST))
Kwon, Tae-Soon (Railroad Safety Research Division, Korea Rairoad Research Institute (KRRI))
Lee, Young-Gi (Intelligent Sensors Research Section, Electronics and Telecommunications Research Institute (ETRI))
Ryou, Myung-Hyun (Department of Chemical and Biological Engineering, Hanbat National University)
Lee, Yong Min (Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST))
Publication Information
Journal of Electrochemical Science and Technology / v.13, no.2, 2022 , pp. 227-236 More about this Journal
Abstract
The microblade cutting method, so-called SAICAS, is widely used to quantify the adhesion of battery composite electrodes at different depths. However, as the electrode thickness or loading increases, the reliability of adhesion values measured by the conventional method is being called into question more frequently. Thus, herein, a few underestimated parameters, such as friction, deformation energy, side-area effect, and actual peeing area, are carefully revisited with ultrathick composite electrodes of 135 ㎛ (6 mAh cm-2). Among them, the existence of side areas and the change in actual peeling area are found to have a significant influence on measured horizontal forces. Thus, especially for ultrahigh electrodes, we can devise a new SAICAS measurement standard: 1) the side-area should be precut and 2) the same actual peeling area must be secured for obtaining reliable adhesion at different depths. This guideline will practically help design more robust composite electrodes for high-energy-density batteries.
Keywords
Advanced Microblade Cutting Method; Adhesion; Ultrathick Composite Electrode; Side-Area Effect; Actual Peeling Area;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 B. Son, M. H. Ryou, J. Choi, T. Lee, H. Kyun Yu, J. H. Kim, Y. M. Lee, A.C.S. Appl. Mater. Interfaces, 2014, 6(1), 526-531.   DOI
2 S. Byun, J-H Yu, J. Choi, S. Yun, Y. Roh, C. B. Dzakpasu, S. H. Park, J. G. Oh, B. K. Hong, Y. M. Lee, J. Power Sources, 2020, 455, 227928.   DOI
3 T. Mochizuki, S. Aoki, T. Horiba, M. S. Dobrick, Z. J. Han, S. Fukuyama, H. Oji, S. Yasuno, S. Komaba, ACS Sustainable Chem. Eng., 2017, 5(7), 6343-6355.   DOI
4 M. Ling, J. Qiu, S. Li, C. Yan, M. J. Kiefel, G. Liu, S. Zhang, Nano Lett., 2015, 15(7), 4440-4447.   DOI
5 L. Ma, J. Meng, Y. Pan, Y. J. Cheng, Q. Ji, X. Zuo, X. Wang, J. Zhu, Y. Xia, Langmuir, 2020, 36(8), 2003-2011.   DOI
6 D. W. Choi, K. L. Choy, Mater. Des., 2020, 191, 108669.   DOI
7 S. Gao, F. S, A. Brady, Y. Pan, A. Erwin, D. Yang, V. Tsukruk, A. G. Stack, T. Saito, H. Yang, P. F. Cao, Nano Energy, 2020, 73, 104804.   DOI
8 M. Zheng, X. Cai, Y. Tan, W. Wang, D. Wang, H. Fei, P. Saha, G. Wang, Chem. Eng. J., 2020, 389, 124404.   DOI
9 Q. H. Nguyen, J. S. Choi, Y. C. Lee, I. T. Kim, J. Hur, J. Ind. Eng. Chem., 2019, 69, 116-126.   DOI
10 Y. Su, K. Zhou, Y. Yuan, W. Liu, Y. Deng, IOP Conf. Ser.: Mater. Sci. Eng., 2020, 793(1), 012025.   DOI
11 S. F. Durrant, J. Anal. At. Spectrom., 1999, 14(9), 1385-1403.   DOI
12 K. Niemax, Fresenius J. Anal. Chem., 2001, 370(4), 332-340.   DOI
13 西山逸雄, 高橋健造, 色材協会誌, 1989, 62(12), 744-748
14 A. Danczak, L. Klemettinen, M. Kurhila, P. Taskinen, D. Lindberg, A. Jokilaaksom, Batteries, 2020, 6(1), 16.   DOI
15 P. Harte, M. Evertz, T. Schwieter, M. Diehl, M. Winter, S. Nowak, Anal. Bioanal. Chem. 2019, 411(3), 581-589.   DOI
16 S. W. Kim, M. H. Ryou, Y. M. Lee, K. Y. Cho, J. Alloys Compd., 2016, 675, 341-347.   DOI
17 D. Song, S. H. Lee, K. Kim, M. H. Ryou, W. H. Park, Y. M. Lee, Appl. Chem. Eng., 2015, 26(6), 674-680.   DOI
18 K. Kim, S. Byun, I. Cho, M. H. Ryou, Y. M. Lee, A.C.S. Appl. Mater. Interfaces, 2016, 8(36), 23688-23695.   DOI
19 S. Byun, Y. Roh, K. M. Kim, M. H Ryou, Y. M. Lee, Appl. Mater. Today, 2020, 21, 100809.   DOI
20 S. Y. Lee, Y. Choi, S. H. Kwon, J. S. Bae, E. D. Jeong, J. Ind. Eng. Chem., 2019, 74, 216-222.   DOI
21 M. Muller, L. Pfaffmann, S. Jaiser, M. Baunach, V.Trouillet, F. Scheiba, P. Scharfer, W. Schabel, W. Bauer, J. Power Sources, 2017, 340, 1-5.   DOI
22 J. Landesfeind, A. Eldiven, H. A. Gasteiger, J. Electrochem. Soc., 2018, 165(5), A1122.   DOI
23 T. Tirronen, D. Sukhomlinov, H. O'Brien, P. Taskinen, M. Lundstrom, J. Cleaner Prod., 2017, 168, 399-409.   DOI
24 T. Schwieters, M. Evertz, M. Mense, M. Winter,S. Nowak, J. Power Sources, 2017, 356, 47-55.   DOI
25 D. Gunther, S. E. Jackson and H. P. Longerich, Spectrochim Acta Part B At Spectrosc, 1999, 54(3-4), 381-409.   DOI
26 J. A. C. Broekaert, J. Anal. Chem., 2000, 368(1), 15-22.
27 R. E. Russo, X. Mao, H. Liu, J. Gonzalez, S. S. Mao, Talanta, 2002, 57(3), 425-451   DOI
28 D. Gunther, I. Horn and B. Hattendorf, Fresenius J Anal Chem, 2000, 368(1), 4-14.   DOI
29 J. S. Becker, Spectrochim. Acta B, 2002, 57(12), 1805-1820.   DOI
30 W. K. Asbeck, The measurement of adhesion in absolute units by knife-cutting methods: the hesiometer, presented at The Eleventh FATIPEC Congress, Brussels Congress Book, 1972, 78-87.
31 J. Choi, M. H. Ryou, B. Son, J. Song, J. K. Park, K. Y. Cho, Y. M. Lee, J. Power Sources, 2014, 252, 138-143.   DOI
32 J. Choi, K. Kim, J. Jeong, K. Y. Cho, M. H. Ryou, Y. M. Lee, A.C.S. Appl. Mater. Interfaces, 2015, 7(27), 14851-14858.   DOI
33 I. Cho, S. Gong, D Song, Y. G. Lee, M. H. Ryou, Y. M. Lee, Sci. Rep., 2016, 6(1), 1-9.   DOI
34 H. Jeon, S. Y. Jin, W. H. Park, H. Lee, H. T. Kim, M. H. Ryou and Y. M. Lee, Electrochim. Acta, 2016, 212, 649-656.   DOI
35 J. Oh, D. Jin, K. Kim, D. Song, Y. M. Lee, M. H. Ryou, A.C.S. Omega, 2017, 2(11), 8438-8444.   DOI
36 Y. Roh, S. Byun, M. H. Ryou, Y. M. Lee, J. Korean Electrochem. Soc., 2018, 21(3), 47-54.   DOI
37 H. Jeon, J. Choi, M. H. Ryou, Y. M. Lee, A.C.S. Omega, 2017, 2(5), 2159-2164.   DOI
38 H. Jeon, I. Cho, H. Jo, K. Kim, M. H. Ryou, Y. M. Lee, Rsc Adv., 2017, 7(57), 35681-35686.   DOI
39 M. Latifatu, C. Y. Bon, K. S. Lee, L. Hamenu, Y. I. Kim, Y. J. Lee, Y. M. Lee, J. M. Ko, J. Electrochem. Sci. Technol., 2018, 9(4), 330-338.   DOI
40 H. Lee, H. K. Jeon, S. Gong, M. H. Ryou, Y. M. Lee, Appl. Surf. Sci., 2018, 427, 139-146.   DOI
41 S. Byun, Y. Roh, D. Jin, M. H. Ryou, Y. M Lee, J. Korean Electrochem. Soc., 2018, 21(2), 28-38.   DOI
42 S. Byun, J. Choi, Y. Roh, D. Song, M. H. Ryou,Y. M. Lee, Electrochim. Acta, 2020, 332, 135471.   DOI
43 J. S. Becker, J. Anal. At. Spectrom., 2002, 17(9), 1172-1185.   DOI
44 J. Kim, S. Byun, S. Lee, J. Ryu, S. Cho, C. Oh, H. Kim, K. No, S. Ryu, Y. M. Lee, S. Hong, Nano Energy, 2020, 75, 104992.   DOI
45 D. Jin, H. S. Bae, J. Hong, S. Kim, J. Oh, K. Kim, T. Jo, Y. M. Lee, Y. G. Lee, M. H. Ryou, Electrochim. Acta, 2020, 364, 136878.   DOI
46 D. Jin, Y. Roh, T. Jo, D. O. Shin, J. Song, J. Y. Kim, Y. G. Lee, H. Lee, M. H. Ryou, Y. M. Lee, Chem. Eng. J., 2021, 406, 126834.   DOI
47 K. Kim, S. Byun, J. Choi, S. Hong, M. H. Ryou, Y. M. Lee, ChemPhysChem., 2018, 19(13), 1627-1634.   DOI