• Title/Summary/Keyword: Precursor Analysis

Search Result 647, Processing Time 0.03 seconds

Effect of Change of Hydrogen Rich Reductant on HC-SCR over Co-Pt/ZSM5 Catalyst (수소 풍부 환원제 변화가 Co-Pt/ZSM5 촉매를 사용하는 탈질 HC-SCR 반응에 미치는 영향)

  • Kim, Seong-Soo;Kim, Dae-Young;Oh, Se-Young;Yoo, Seong-Jeon;Sur, Young-Sek;Kim, Jin-Gul
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.3
    • /
    • pp.199-206
    • /
    • 2012
  • HC-SCR was conducted over Co-Pt/ZSM5 catalyst coated over 200 cpsi cordierite in the condition of atomspheric pressure and $200^{\circ}C-500^{\circ}C$. Weight ratio of Co/Pt determined from EDX analysis was 8/2, which was almost equal to the weight ratio at preparation step. XPS showed that nitrates within cobalt precursor and chlorine withn Pt precursor were removed. TEM result demonstrated that crystallite size of cobalt and Pt was under 5nm. Among these tested hydrocarbon reductants, isobutane ($i-C_4H_{10}$) showed the highest de-$NO_x$ yield of 80% under the condition of the mole ratio of reductant/NOx=1.0 at $180^{\circ}C$. De-$NO_x$ yield from HC-SCR was increased as the carbon number of hydrocarbon reductant was increased. The decrease of bonding energy between C and H of HC reductant played a role to increase of de-$NO_x$ yield, which indicated that the dissociation step of C-H bond of hydrocarbon molecule might be the rate determining step of HC-SCR. The increase of oxygen concentration in the feed resulted in the decrease of de-$NO_x$ yield but the increase of CO and $N_2O$ yield.

Optimized Decomposition of Ammonia Borane for Controlled Synthesis of Hexagonal Boron Nitride Using Chemical Vapor Deposition

  • Han, Jaehyu;Kwon, Heemin;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.285-285
    • /
    • 2013
  • Recently, hexagonal boron nitride (h-BN), which is III-V compound of boron and nitride by strong covalent sp2 bonds has gained great interests as a 2 dimensional insulating material since it has honeycomb structure with like graphene with very small lattice mismatch (1.7%). Unlike graphene that is semi-metallic, h-BN has large band gap up to 6 eV while providing outstanding properties such as high thermal conductivity, mechanical strength, and good chemical stability. Because of these excellent properties, hBN can potentially be used for variety of applications such as dielectric layer, deep UV optoelectronic device, and protective transparent substrate. Low pressure and atmospheric pressure chemical vapor deposition (LPCVD and APCVD) methods have been investigated to synthesize h-BN by using ammonia borane as a precursor. Ammonia borane decomposes to polyiminoborane (BHNH), hydrogen, and borazine. The produced borazine gas is a key material that is a used for the synthesis of h-BN, therefore controlling the condition of decomposed products from ammonia borane is very important. In this paper, we optimize the decomposition of ammonia borane by investigating temperature, amount of precursor, and other parameters to fabricate high quality monolayer h-BN. Synthesized h-BN is characterized by Raman spectroscopy and its absorbance is measured with UV spectrophotometer. Topological variations of the samples are analyzed by atomic force microscopy. Scanning electron microscopy and Scanning transmission Electron microscopy are used for imaging and analysis of structures and surface morphologies.

  • PDF

Properties of Synthesis (BaSr)$(CoFe)O_3$ Cathode for IT-SOFC by GNP (GNP 법을 이용한 저온형 SOFC용 (BaSr)$(CoFe)O_3$ 공기극의 제조 및 특성 평가)

  • Lee, Mi-Jai;Moon, Ji-Woong;Kim, Sei-Ki;Ji, Mi-Jung;Hwang, Hae-Jin;Lim, Yong-Ho;Choi, Byung-Hyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.51-54
    • /
    • 2006
  • Cathode material, $(Ba_{0.5}Sr_{0.5})_{0.99}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$, for low temperature SOFC was prepared by the glycine-nitrate synthesis process (GNP). The characteristics of the synthesized powders were studied with controlling pH of a precursor. The synthesis BSCF powders with pH were agglomeration state and calcinations temperature has not influence on particles. Highly acidicprecursor solution increased a single phase forming the temperature. Also, synthesis BSCF powder was show result for thermal analysis and alteration of difference crystal with pH. It is considered that Ba and Sr cannot complex by carboxylic acid group of glycine, because under highly acidic condition the caboxylic group mainly combined with $H^+$ insead of alkali and alkaline earth cations. In case of using precursor solution with pH $2{\sim}3$, a single perovskite phase was obtained at $1000^{\circ}C$. Polarization resistance of $(Ba_{0.5}Sr_{0.5})_{0.99}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ was measured by AC impedance spectroscopy from the two electrode symmetric cell. Area specific resistance of the $(Ba_{0.5}Sr_{0.5})_{0.99}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ air electrode at $500^{\circ}C\;and\;600^{\circ}C$ were $0.96{\Omega}?cm^2$ and $0.16{\Omega}?cm^2$, respectively.

  • PDF

The relationship between precursor concentration and antibacterial activity of biosynthesized Ag nanoparticles

  • Balaz, Matej;Balazova, Ludmila;Kovacova, Maria;Daneu, Nina;Salayova, Aneta;Bedlovicova, Zdenka;Tkacikova, Ludmila
    • Advances in nano research
    • /
    • v.7 no.2
    • /
    • pp.125-134
    • /
    • 2019
  • The Origanum vulgare L.-mediated synthesis of Ag nanoparticles was successfully realized within the present study. Various concentrations of the $AgNO_3$ used as a silver precursor (1, 2.5, 5, 10 and 100 mM) were used. Very rapid formation of Ag nanoparticles was observed, as only minutes were necessary for the completion of the reaction. With the increasing concentration, red shift of the surface plasmon resonance peak was observed in the Vis spectra. According to photon cross-correlation spectroscopy results, the finest grain size distribution was obtained for the 2.5 mM sample. The transmission electron microscopy analysis of this sample has shown bimodal size distribution with larger crystallites with 100 nm size and smaller around 10 nm. The antibacterial activity was also the best for this sample so the positive correlation between good grain size distribution and antibacterial activity was found. The in-depth discussion of antibacterial activity with related works from the materials science point of view is provided, namely emphasizing the role of effective nanoparticles distribution within the plant extract or matrix. The antibacterial activity seems to be governed by both content of Ag nanoparticles and their effective distribution. This work contributes to still expanding environmentally acceptable field of green synthesis of silver nanoparticles.

Preparation of PDMS Surface Modifier Using Silane-Functionalized Polymer Precursor Manufacture and Their Properties (실란 기능화 아크릴 고분자 전구체를 이용한 PDMS 표면 개질제 제조 및 표면 물성)

  • Shin, Jae-Hyeon;Kim, Nahae;Kim, Juyoung
    • Journal of Adhesion and Interface
    • /
    • v.19 no.4
    • /
    • pp.154-162
    • /
    • 2018
  • Plasma treatment and corona treatment have been used for surface modification of polydimethylsiloxane (PDMS) film by activating its surface with the -OH group. Adhesion promoter or coupling agent was also used to improve adhesion of PDMS film with various materials. However, obtained hydrophilicity onto the surface of PDMS films with those processes was transient and vulnerable. In this study, a new alkoxysilane-functionalized acrylic polymer precursor was first synthesized by copolymerization process, and then was reacted with HO-terminated PDMS through condensation reaction to prepare a new surface modifier for PDMS film. The structure and molecular weight of the prepared surface modifier were confirmed by 1H-NMR and GPC measurement. Surface properties of surface modifier-coated PDMS films were also investigated by using XPS, ATR and WCA analysis. The adhesion between the PDMS film and the surface modifier was tested using cross-cut test.

Synthesis and Characterization of Non-precious Metal Co-PANI-C Catalysts for Polymer Electrolyte Membrane Fuel Cell Cathodes (고분자 전해질 연료전지 캐소드용 코발트-폴리아닐린-탄소로 구성된 비귀금속 촉매의 제조 및 특성 평가)

  • Choi, Jong-Ho
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.1
    • /
    • pp.52-58
    • /
    • 2013
  • In order to overcome the cost issue for commercialization of polymer electrolyte membrane fuel cell (PEMFC), this research was conducted for replacing platinum cathode catalyst with non-precious metal catalyst. The non-precious metal catalyst (Co-PANI-C) was synthesized by the simple reduction method with polyaniline (PANI), carbon black, and cobalt precursor without any heat treatment. Characterization of new Co-PANI-C composite catalysts was done by the measurement of X-ray diffraction (XRD) and thermogravimetric analysis (TGA) for structure analysis and performed by rotating disk electrode (RDE) and rotating ring disk electrode (RRDE) for electrochemical analysis. As a result, Co-PANI-C catalyst showed 60 mV lower on-set potential for oxygen reduction reaction (ORR) than Pt/C catalyst, but the overall reduction current of Co-PANI-C catalysts by ORR was still smaller than that of Pt/C. In addition, the ORR behavior of Co-PANI-C catalysts depending on the rotation speed of electrode and the stability of Co-PANI-C catalyst under potential cycling and the performance of fuel cell conditions are also discussed.

Numerical analysis of the impulsive noise generation and propagation using high order scheme (고차의 수치적 기법을 적용한 충격소음의 생성 및 전파 해석)

  • Kim, Min-Woo;Kim, Sung-Tae;Kim, Kyu-Hong;Lee, Soo-Gab
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1494-1498
    • /
    • 2007
  • Impulsive shooting noise is basically complex phenomenon which contains the linear and non-linear characteristics. For those reasons, numerical analysis of impulsive shooting noise has the difficulties in control of the numerical stability and accuracy on the simulation. In this research, Wave-number Extended Finite Volume Scheme (WEFVS) is applied to the numerical analysis of impulsive shooting noise. In the muzzle blast flow simulation, the generation of the precursor wave and the induced vortex ring are observed. Consequently, blast wave. vortex ring interaction and vortex ring. bow shock wave interaction are evaluated on the shooting process using the accurate and stable scheme. The sound generation in the interactions can be explained by the vorticity transport theorem. The shear layer is evolved behind the projectiles due to the jet flow. In these computations, the impulsive shooting noise is generated by the complex interaction with shooting process and is propagated to the far-field boundary. The impulsive shooting noise generation can be observed by the applications of WEFVS and analyzed by the physical phenomena.

  • PDF

Sustainable Surface Deformation Related with 2006 Augustine Volcano Eruption in Alaska Measured Using GPS and InSAR Techniques

  • Lee, Seulki;Kim, Sukyung;Lee, Changwook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.4
    • /
    • pp.357-372
    • /
    • 2016
  • Augustine volcano, located along the Aleutian Arc, is one of the most active volcanoes in Alaska and nearby islands, with seven eruptions occurring between 1812 and 2006. This study monitored the surface displacement before and after the most recent 2006 eruption. For analysis, we conducted a time-series analysis on data observed at the permanent GPS(Global Positioning System) observation stations in Augustine Island between 2005 and 2011. According to the surface displacement analysis results based on GPS data, the movement of the surface inflation at the average speed of 2.3 cm/year three months prior to the eruption has been clearly observed, with the post-eruption surface deflation at the speed of 1.6 cm/year. To compare surface displacements measurement by GPS observation, ENVISAT(Environmental satellite) radar satellite data were collected between 2003 and 2010 and processed the SBAS(Small Baseline Subset) method, one of the time-series analysis techniques using multiple InSAR(Interferometric Synthetic Aperture Radar) data sets. This result represents 0.97 correlation value between GPS and InSAR time-series surface displacements. This research has been completed precise surface deformation using GPS and time-series InSAR methods for a detection of precursor symptom on Augustine volcano.

The Study of Service Event Relation Analysis Using Recurrent Neural Network (Recurrent Neural Network를 활용한 서비스 이벤트 관계 분석에 관한 연구)

  • Jeon, Woosung;Park, Youngsuk;Choi, Jeongil
    • Journal of Information Technology Services
    • /
    • v.17 no.4
    • /
    • pp.75-83
    • /
    • 2018
  • Enterprises need to monitor systems for reliable IT service operations to quickly detect and respond to events affecting the service, thereby preventing failures. Events in non-critical systems can be seen as a precursor to critical system incidents. Therefore, event relationship analysis in the operation of IT services can proactively recognize and prevent faults by identifying non-critical events and their relationships with incidents. This study used the Recurrent Neural Network and Long Short Term Memory techniques to create a model to analyze event relationships in a system and to verify which models are suitable for analyzing event relationships. Verification has shown that both models are capable of analyzing event relationships and that RNN models are more suitable than LSTM models. Based on the pattern of events occurring, this model is expected to support the prediction of the next occurrence of events and help identify the root cause of incidents to help prevent failures and improve the quality of IT services.

Comparison between Source-induced Dissociation and Collision-induced Dissociation of Ampicillin, Chloramphenicol, Ciprofloxacin, and Oxytetracycline via Mass Spectrometry

  • Lee, Seung Ha;Choi, Dal Woong
    • Toxicological Research
    • /
    • v.29 no.2
    • /
    • pp.107-114
    • /
    • 2013
  • Mass spectrometry (MS) is a very powerful instrument that can be used to analyze a wide range of materials such as proteins, peptides, DNA, drugs, and polymers. The process typically involves either chemical or electron (impact) ionization of the analyte. The resulting charged species or fragment is subsequently identified by the detector. Usually, single mass uses source-induced dissociation (SID), whereas mass/mass uses collision-induced dissociation (CID) to analyze the chemical fragmentations Each technique has its own advantages and disadvantages. While CID is most effective for the analysis of pure substances, multiple-step MS is a powerful technique to get structural data. Analysis of veterinary drugs ampicillin, chloramphenicol, ciprofloxacin, and oxytetracycline serves to highlight the slight differences between SID and CID. For example, minor differences were observed between ciprofloxacin and oxytetracycline via SID or CID. However, distinct fragmentation patterns were observed for ampicllin depending on the analysis method. Both SID and CID showed similar fragmentation spectra but different signal intensities for chloramphenicol. There are several factors that can influence the fragmentation spectra, such as the collision energy, major precursor ion, electrospray mode (positive or negative), and sample homogeneity. Therefore, one must select a fragmentation method on an empirical and case-by-case basis.