• Title/Summary/Keyword: Precision medicine

Search Result 525, Processing Time 0.028 seconds

Tackling range uncertainty in proton therapy: Development and evaluation of a new multi-slit prompt-gamma camera (MSPGC) system

  • Youngmo Ku;Sehoon Choi;Jaeho Cho;Sehyun Jang;Jong Hwi Jeong;Sung Hun Kim;Sungkoo Cho;Chan Hyeong Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3140-3149
    • /
    • 2023
  • In theory, the sharp dose falloff at the distal end of a proton beam allows for high conformal dose to the target. However, conformity has not been fully achieved in practice, primarily due to beam range uncertainty, which is approximately 4% and varies slightly across institutions. To address this issue, we developed a new range verification system prototype: a multi-slit prompt-gamma camera (MSPGC). This system features high prompt-gamma detection sensitivity, an advanced range estimation algorithm, and a precise camera positioning system. We evaluated the range measurement precision of the prototype for single spot beams with varying energies, proton quantities, and positions, as well as for spot-scanning proton beams in a simulated SSPT treatment using a phantom. Our results demonstrated high accuracy (<0.4 mm) in range measurement for the tested beam energies and positions. Measurement precision increased significantly with the number of protons, achieving 1% precision with 5 × 108 protons. For spot-scanning proton beams, the prototype ensured more than 5 × 108 protons per spot with a 7 mm or larger spot aggregation, achieving 1% range measurement precision. Based on these findings, we anticipate that the clinical application of the new prototype will reduce range uncertainty (currently approximately 4%) to 1% or less.

An experience on the model-based evaluation of pharmacokinetic drug-drug interaction for a long half-life drug

  • Hong, Yunjung;Jeon, Sangil;Choi, Suein;Han, Sungpil;Park, Maria;Han, Seunghoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.6
    • /
    • pp.545-553
    • /
    • 2021
  • Fixed-dose combinations development requires pharmacokinetic drugdrug interaction (DDI) studies between active ingredients. For some drugs, pharmacokinetic properties such as long half-life or delayed distribution, make it difficult to conduct such clinical trials and to estimate the exact magnitude of DDI. In this study, the conventional (non-compartmental analysis and bioequivalence [BE]) and model-based analyses were compared for their performance to evaluate DDI using amlodipine as an example. Raw data without DDI or simulated data using pharmacokinetic models were compared to the data obtained after concomitant administration. Regardless of the methodology, all the results fell within the classical BE limit. It was shown that the model-based approach may be valid as the conventional approach and reduce the possibility of DDI overestimation. Several advantages (i.e., quantitative changes in parameters and precision of confidence interval) of the model-based approach were demonstrated, and possible application methods were proposed. Therefore, it is expected that the model-based analysis is appropriately utilized according to the situation and purpose.

What's New in Molecular Targeted Therapies for Head and Neck Cancer? (두경부암의 최신 표적치료)

  • Lee, Seoyoung;Kim, Hye Ryun
    • Korean Journal of Head & Neck Oncology
    • /
    • v.37 no.2
    • /
    • pp.11-17
    • /
    • 2021
  • Head and neck cancer is the 6th most frequently diagnosed solid tumor in the world. Alcohol consumption, smoking, and HPV infection are associated with the incidence of head and neck squamous cell carcinoma (HNSCC). Although a multidisciplinary approach is a key strategy for the treatment of locally advanced HNSCC, systemic therapy is the mainstream of recurrent or metastatic HNSCC treatment. Stage IV HNSCC has a relatively poor prognosis with median overall survival of around one year. There have been many clinical trials to investigate the efficacy of target agents in the treatment of HNSCC. In the HPV-negative HNSCC, TP53 and CDKN2A are the most commonly mutated genes. In the HPV-positive HNSCC, the PI3K pathway is frequently altered. EGFR, PI3K, cell cycle pathway, MET, HRAS, and IL6/JAK/STAT pathway are explored targets in HNSCC. In this study, we review the target pathways and agents under research. We also introduce here umbrella trials of recurrent or metastatic HNSCC conducted by the Korea Cancer Study Group. The combination of target agents with immune checkpoint inhibitors or cytotoxic chemotherapies would be a future step in the precision medicine of HNSCC treatment.

Status of Domestic and International Recommendations for Protection Design and Evaluation of Medical Linear Accelerator Facilities

  • Choi, Sang Hyoun;Shin, Dong Oh;Shin, Jae-ik;Kwon, Na Hye;Ahn, So Hyun;Kim, Dong Wook
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.83-91
    • /
    • 2021
  • Various types of high-precision radiotherapy, such as intensity-modulated radiation therapy (IMRT), tomotherapy (Tomo), and stereotactic body radiation therapy have been available since 1997. After being covered by insurance in 2015, the number of IMRT cases rapidly increased 18-fold from 2011 to 2018 in Korea. IMRT, which uses a high-beam irradiation monitor unit, requires higher shielding conditions than conventional radiation treatments. However, to date, research on the shielding of facilities using IMRT and the current understanding of its status are insufficient, and detailed safety regulation procedures have not been established. This study investigated the recommended criteria for the shielding evaluation of facilities using medical linear accelerators (LINACs), including 1) the current status of safety management regulations and systems in domestic and international facilities using medical LINACs and 2) the current status of the recommended standards for safety management in domestic and international facilities using medical LINACs. It is necessary to develop and introduce a safety management system for facilities using LINACs for clinical applications that is suitable for the domestic medical environment and corresponds to the safety management systems for LINACs used overseas.

Development of sequential sampling plan for Frankliniella occidentalis in greenhouse pepper (고추 온실에서 꽃노랑총채벌레의 축차표본조사법 개발)

  • SoEun Eom;Taechul Park;Kimoon Son;Jung-Joon Park
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.2
    • /
    • pp.164-171
    • /
    • 2022
  • Frankliniella occidentalis is an invasive pest insect, which affects over 500 different species of host plants and transmits viruses (tomato spotted wilt virus; TSWV). Despite their efficiency in controling insect pests, pesticides are limited by residence, cost and environmental burden. Therefore, a fixed-precision level sampling plan was developed. The sampling method for F. occidentalis adults in pepper greenhouses consists of spatial distribution analysis, sampling stop line, and control decision making. For sampling, the plant was divided into the upper part(180 cm above ground), middle part (120-160 cm above ground), and lower part (70-110 cm above ground). Through ANCOVA, the P values of intercept and slope were estimated to be 0.94 and 0.87, respectively, which meant there were no significant differences between values of all the levels of the pepper plant. In spatial distribution analysis, the coefficients were derived from Taylor's power law (TPL) at pooling data of each level in the plant, based on the 3-flowers sampling unit. F. occidentalis adults showed aggregated distribution in greenhouse peppers. TPL coefficients were used to develop a fixed-precision sampling stop line. For control decision making, the pre-referred action thresholds were set at 3 and 18. With two action thresholds, Nmax values were calculated at 97 and 1149, respectively. Using the Resampling Validation for Sampling Program (RVSP) and the results gained from the greenhouses, the simulated validation of our sampling method showed a reasonable level of precision.

Cantharidin Overcomes Imatinib Resistance by Depleting BCR-ABL in Chronic Myeloid Leukemia

  • Sun, Xiaoyan;Cai, Xueting;Yang, Jie;Chen, Jiao;Guo, Caixia;Cao, Peng
    • Molecules and Cells
    • /
    • v.39 no.12
    • /
    • pp.869-876
    • /
    • 2016
  • Cantharidin (CTD) is an active compound isolated from the traditional Chinese medicine blister beetle and displayed anticancer properties against various types of cancer cells. However, little is known about its effect on human chronic myeloid leukemia (CML) cells, including imatinib-resistant CML cells. The objective of this study was to investigate whether CTD could overcome imatinib resistance in imatinib-resistant CML cells and to explore the possible underlying mechanisms associated with the effect. Our results showed that CTD strongly inhibited the growth of both imatinib-sensitive and imatinib-resistant CML cells. CTD induced cell cycle arrest at mitotic phase and triggered DNA damage in CML cells. The ATM/ATR inhibitor CGK733 abrogated CTD-induced mitotic arrest but promoted the cytotoxic effects of CTD. In addition, we demonstrated that CTD downregulated the expression of the BCR-ABL protein and suppressed its downstream signal transduction. Real-time quantitative PCR revealed that CTD inhibited BCR-ABL at transcriptional level. Knockdown of BCR-ABL increased the cell-killing effects of CTD in K562 cells. These findings indicated that CTD overcomes imatinib resistance through depletion of BCR-ABL. Taken together, CTD is an important new candidate agent for CML therapy.

Comparison of formaldehyde concentration in working environment between passive sampling method and impinger sampling method (능동포집법과 확산포집법에 의한 작업환경 중 포름알데히드 농도 비교)

  • Ham, Seong-Ae;Mun, Deok-Hwan
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.16 no.4
    • /
    • pp.346-355
    • /
    • 2006
  • The purpose of this study was conducted to ascertain the difference between impinger and passive sampling methods in the process of sampling and analyzing on airborne formaldehyde. Formaldehyde generating workplaces included in this study comprised four types of manufacturing industry such as two workplaces of products of wood, cork, straw and plaiting materials manufacturing industries, one casting metal manufacturing industry, and one parts and accessories for motor vehicles and it′s engines manufacturing industry. Workplaces contained in this study were located in some manufacturing area of Busan industrial complex and this study was carried out during a period from January 2003 to December 2004. Analytical accuracy, precision and detection limit of two methods was compared. Exposure level of its airborne concentration was evaluated in formaldehyde generating workplaces those were classified by types of industry, working process, and time. The results were as follows ; 1. A rate of recovery was 107.1% in impinger method and 101.8% in passive method, and precision was 7.79% in impinger method and 4.40% in passive method. There was no statistical significance in analytical accuracy and precision between two methods. A limitation of detection was 0.011 ppm in passive method which was lower than that of impinger method (0.020 ppm) by 1.8 times. 2. Airborne formaldehyde concentration of impinger method was different from passive method. It′s concentration by passive method was higher by 5.1 times than that by impinger method in the parts and accessories for motor vehicles and it′s engines manufacturing industry (P<0.05). Only in molding process among several types of processes, formaldehyde concentration in passive method was higher by 5.1 times than that in impinger method (P<0.05). Furthermore, formaldehyde concentration in passive method was higher by 1.7 times than that in impinger method (P<0.05) in the first half of year 2003. 3. The geometric mean of formaldehyde concentration in impinger method was lower than that in passive method, but there was no statistical significance of formaldehyde concentration by the difference of sampling method. In conclusion, it is difficult to conclude which is better between the two sampling methods because of no statistical significance for the difference of concentration. Because of lacks of certified passive sampling and analytical method, at present situation, studies on verification of accuracy and precision, obstructive reaction against validity on its exposure assessment, and research to develop domestically manufactured passive sampler in terms of cost-effectiveness should be continuously carried out.

Development of Sequential Sampling Plan for Bemisia tabaci in Paprika Greenhouses (파프리카 온실에서 담배가루이의 축차표본조사법 개발)

  • Choi, Wonseok;Park, Jung-Joon
    • Korean journal of applied entomology
    • /
    • v.54 no.3
    • /
    • pp.159-167
    • /
    • 2015
  • In order to establish B. tabaci control in paprika greenhouses a fixed-precision-level sampling plan was developed. The sampling plan consisted of spatial distribution analysis, a sampling stop line, and decision making. Sampling was conducted simultaneously in two independent greenhouses (GH 1, GH 2). GH 1 and 2 were surveyed every week for 22 consecutive weeks, using 19 sampling locations in GH 1 and 9 sampling locations in GH 2. The plant in both greenhouses were divided into top (180-220 cm from the ground), middle (80-120 cm from the ground) and bottom (30-70 cm from the ground) sections and B. tabaci adults and pupae were observed on three paprika leaves at each position and recorded separately. GH 2 data were used to validate the fixed-precision sampling plan, which was developed using GH 1 data. In this study, spatial distribution analysis was performed using Taylor's power law with the pooled data of the top and bottom position (B. tabaci adults), and the middle and bottom positions (B. tabaci pupae), based on a 1-leaf sampling unit. Decision making was undertaken using the maximum of action threshold in accordance with previously published method, and the value was decided by the price of the plants. Using the results obtained in the greenhouse, simulated validation of the developed sampling plan by RVSP (Resampling Validation for Sampling Plan) indicated a reasonable level of precision.

Analysis Study on the Detection and Classification of COVID-19 in Chest X-ray Images using Artificial Intelligence (인공지능을 활용한 흉부 엑스선 영상의 코로나19 검출 및 분류에 대한 분석 연구)

  • Yoon, Myeong-Seong;Kwon, Chae-Rim;Kim, Sung-Min;Kim, Su-In;Jo, Sung-Jun;Choi, Yu-Chan;Kim, Sang-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.5
    • /
    • pp.661-672
    • /
    • 2022
  • After the outbreak of the SARS-CoV2 virus that causes COVID-19, it spreads around the world with the number of infections and deaths rising rapidly caused a shortage of medical resources. As a way to solve this problem, chest X-ray diagnosis using Artificial Intelligence(AI) received attention as a primary diagnostic method. The purpose of this study is to comprehensively analyze the detection of COVID-19 via AI. To achieve this purpose, 292 studies were collected through a series of Classification methods. Based on these data, performance measurement information including Accuracy, Precision, Area Under Cover(AUC), Sensitivity, Specificity, F1-score, Recall, K-fold, Architecture and Class were analyzed. As a result, the average Accuracy, Precision, AUC, Sensitivity and Specificity were achieved as 95.2%, 94.81%, 94.01%, 93.5%, and 93.92%, respectively. Although the performance measurement information on a year-on-year basis gradually increased, furthermore, we conducted a study on the rate of change according to the number of Class and image data, the ratio of use of Architecture and about the K-fold. Currently, diagnosis of COVID-19 using AI has several problems to be used independently, however, it is expected that it will be sufficient to be used as a doctor's assistant.

Evolution of Radiological Treatment Response Assessments for Cancer Immunotherapy: From iRECIST to Radiomics and Artificial Intelligence

  • Nari Kim;Eun Sung Lee;Sang Eun Won;Mihyun Yang;Amy Junghyun Lee;Youngbin Shin;Yousun Ko;Junhee Pyo;Hyo Jung Park;Kyung Won, Kim
    • Korean Journal of Radiology
    • /
    • v.23 no.11
    • /
    • pp.1089-1101
    • /
    • 2022
  • Immunotherapy has revolutionized and opened a new paradigm for cancer treatment. In the era of immunotherapy and molecular targeted therapy, precision medicine has gained emphasis, and an early response assessment is a key element of this approach. Treatment response assessment for immunotherapy is challenging for radiologists because of the rapid development of immunotherapeutic agents, from immune checkpoint inhibitors to chimeric antigen receptor-T cells, with which many radiologists may not be familiar, and the atypical responses to therapy, such as pseudoprogression and hyperprogression. Therefore, new response assessment methods such as immune response assessment, functional/molecular imaging biomarkers, and artificial intelligence (including radiomics and machine learning approaches) have been developed and investigated. Radiologists should be aware of recent trends in immunotherapy development and new response assessment methods.