• Title/Summary/Keyword: Precision control

Search Result 4,603, Processing Time 0.034 seconds

Attitude Control of Agile Spacecraft Using Momentum Exchange Devices

  • Lee, Hyun-Jae;Cho, Shin-Je;Bang, Hyo-Choong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.2
    • /
    • pp.14-25
    • /
    • 2006
  • This paper is focused on designing an implementable control law to perform spacecraft various missions using momentum exchange devices such as reaction wheels(RWs) and control moment gyros(CMGs). A compact equation of motion of a spacecraft installed with various momentum exchange devices is derived in this paper. A hybrid control law is proposed for precision attitude control of agile spacecraft. The control law proposed in this paper allocates control torque to the CMGs and the RWs adequately to satisfy the precision attitude control and large angle maneuver simultaneously. The saturation problem of reaction wheels and the singularity problem of control moment gyros are considered. The problems are successfully resolved by using the proposed hybrid closed loop control law. Finally, the proposed hybrid control law is demonstrated by numerical simulations.

Cooperative Control of Two Spatial Flexible Manipulators -Verification by Experiments- (3차원 양팔 유연 매니퓨레이터의 협조제어 (실험에 의한 검증))

  • Kim, Jin-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.9
    • /
    • pp.87-94
    • /
    • 2000
  • In this paper we discuss the control scheme on cooperative control of two flexible manipulators working in 3D space. We propose a control scheme which consists of hybrid position/force control and vibration suppression control. Hybrid position/force control is extended from the scheme for two cooperating rigid manipulators to that for flexible ones. in addition to the control vibration suppression control based upon a lumped-mass-spring model of the flexible manipulators is applied. To illustrate the validity of the proposed control scheme we show experimental results. in the experiment a rigid object is handled by two cooperating flexible manipulators in 3D space.

  • PDF

Mechanically Modulated Actuators and Branched Finger Detectors for Nano-Precision MEMS Applications

  • Cho, Young-Ho;Lee, Won-Chul;Han, Ki-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.39.1-39
    • /
    • 2002
  • We present nanoactuators and nanodetectors for high-precision Micro Electro Mechanical System (MEMS) applications. Major technical difficulties in the high-precision MEMS are arising from the fabrication uncertainty and electrical noise problems. In this paper, we present high-precision actuators and detectors, overcoming the technical limitations placed by the conventional MEMS technology. For the nano-precision actuation, we present a nonlinearly modulated digital actuator (NMDA). NMDA composed of a digital microactuator and a nonlinear micromechanical modulator. The nonlinear micromechanical modulator is intended to purify the actuation errors in the stroke of the digital a...

  • PDF

Characteristic Analysis of Voice Coil Motor with Position Resolution of High Precision (고정밀 위치 분해능을 갖는 보이스 코일 모터의 특성 해석)

  • Lee, Hong-Kyo;Oh, Ju-Hwan;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.43-45
    • /
    • 2005
  • A High precision position control technique is used in many kind of industry areas. Especially this is to be one of the important parts in the development of precision machines. To get high precision and long range, dual servo voice coil motor(VCM) has been designed and implemented. In this paper, as a simulation and experimental result, the developed dual servo VCM shows the applicable possibility for precision machine system.

  • PDF

A Study on the Position Control of Electrohydraulic Servo System Using Adaptive Sliding Mode Control (Adaptive Sliding Mode Control을 이용한 전기유압식 서어보시스템의 위치제어에 관한 연구)

  • Hyun, Jang-Hwan;Lee, Chug-Oh
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.6
    • /
    • pp.143-157
    • /
    • 1994
  • This paper is concerned with the position control of electrohydraulic servo system under parameter variation. An adaptive sliding mode control which uses the direct parameter estimation scheme, is proposed to design a robust controller for fast and accurate control of the system. It is shown that the adaptive sliding mode control algorithm is robust and effective in attaining fast and accurate position control of system under time-dependent parameter variation. It is also shown experimentally that chattering phenomena in a sliding mode control can significantly be reduced by using boundary layer technique, and that new approach in sliding mode control introducing a term proportional to the distance between the current state and the sliding surface in the control law is effective to obtain fast response and to increase stability of the system. Computer simulation on the dynamic performance of the control system is also presented.

  • PDF

Development and Evaluation of 3-Axis Gyro Sensor based Servo motion control (3-Axis Gyro Sensor based on Servo Motion Control 장치의 성능평가기준 및 시험규격개발)

  • Lee, WonBu;Chang, Chulsoon;Kim, JeongKuk;Park, Soohong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.627-630
    • /
    • 2009
  • The combination of the marine use various multi sensor surveillance system technology with the development of servo motion control algorithm and gyro sensor in six freedom motion is implemented to analyze the movement response. The stabilization of the motion control is developed and Nano driving Precision Pan-Tilt/Gimbal system is obtained from the security positioning cameras with ultra high speed device is used to carry out the exact behavior of the device. The exact behavior will be used to make a essential equipment. Finally the development of the Nano Driving Multi Sensor, Nano of Surveillance System Driving Precision Pan-Tilt/Gimbal optimal design and production, 3-aix Gyro Sensor based with Servo Motion Control algorithm development, Image trace video software and hardware tracking the development is organized and discuss in details. The development of the equipment and the system integration are fully experimented and verified.

  • PDF

Characterization of ultra Precision Grinding Plate for GMR Head Manufacturing by Measuring Frictional Force (마찰력 측정을 통한 GMR 헤드 제작용 초정밀 연마판의 특성화)

  • 노병국;김기대
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.78-83
    • /
    • 2003
  • Characterization of an ultra precision grinding plate for GMR head manufacturing is performed by measuring frictional forces between the grinding plate and the advanced ceramic Two kinds of methods of producing the precision grinding plates are presented: texturing and micro-channeling. Texturing is effective in terms of production time but micro-channeling excels in quality control. It is found that the frictional coefficient of a precision grinding plate decreases as the impregnation of diamond grain onto the precision-grinding plate progresses, and remains unchanged once the impregnation process is successfully completed, even after 100 revolutions of the precision-grinding plate against the advanced ceramic under 40 N of normal force. Therefore, the measurement of the frictional coefficient can replace costly and time-consuming process of estimating the level of impregnation of diamond grain on the precision-grinding plate, which has been performed by using scanning electron microscope, and be employed as an index to determine the level of impregnation of diamond grain.

Tension Control of Hot Strip Finishing Mill (열간 사상압연 공정의 장력제어)

  • 이동욱;안병준;배종일;이만형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.322-325
    • /
    • 2002
  • We describe the looper controller design for a hot strip mill. The looper is to control the strip tension which influences on the width of the strip. It is very important to control the looper control of the hot strip mill, but difficult to control the looper, because there exists on mutual interaction among strip gauge, looper angle, and strip tension. In this paper, we present the modeling for the hot strip finishing mill to control the tension of the strip and suggest a cross control method. The cross control is a very simple method that allows non-interacting control.

  • PDF

Application of Perturbation Estimation using Fractional-Order Hold Technique to Sliding Mode Control (Fractional-Order Hold기법을 이용한 섭동 추정기의 슬라이딩 모드 제어에 적용)

  • Nam Yun Joo;Lee Yuk-Hyung;Park Myeong-Kwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.1 s.178
    • /
    • pp.121-128
    • /
    • 2006
  • This paper deals with the application of enhanced perturbation estimation (SMCEPE) to sliding mode control of a dynamic system in the presence of perturbations including external disturbances, unpredictable parameter variations, and unstructured dynamics. Compared to conventional sliding mode control (SMC) and sliding mode control with perturbation estimation (SMCPE), the proposed one can offer robust control performances under serious control conditions, such as fast dynamic perturbations and slow loop-closure speeds, without a priori knowledge on upper bounds of perturbations. The perturbation estimator in SHCEPE also has more adaptability owing to the fractional-order hold technique. The effectiveness and superiority of the proposed control strategy are demonstrated by a series of simulations on the position tracking control of a two-link robot manipulator.

Anti-sway Control of Crane System using Hybrid Control Method (하이브리드 방식을 이용한 크레인의 안티스웨이 제어)

  • 박흥수;박준형;이동훈;김상봉
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.559-562
    • /
    • 1995
  • In the crane control system, it is reguired that the travelling time of the crane must be reduced as much as possible and the swing must be stoped at the end point. In paper, we present a hybrid control method which include the optimal regulator and velocity pattern controller in order to make high performance of the anti-sway. To implement the control algorithm, the dynamic equation is linearlized at an equilibrium point, so that the liner time invariant state equation can be obtained. In order to experiment the crane control, we consider 1 over 10 of the gantry crane which is used in a port. As a result, the hybrid control method improve efficient anti-sway control more than conventional velocity pattern control. It is expected that the proposed system will make an important contribution to the industrial fields.

  • PDF