• 제목/요약/키워드: Precision cold-forging

검색결과 142건 처리시간 0.021초

신경망을 이용한 클러치 기어의 정밀성형공법 개발 (Development of Forming Technology for Clutch Gear Using Artificial Neural Network)

  • 강재영;김병민;김영환;김동환
    • 한국정밀공학회지
    • /
    • 제28권7호
    • /
    • pp.827-833
    • /
    • 2011
  • Precision forging of gears has a lot of advantages when compared to conventional gear shaping, because it allows the manufacture of gear parts without flash and consequently without the need for subsequent machining operations. In this study, the cold forging process is determined to manufacture the cold forged product for the precision clutch gear used of a commercial automobile, To do this, shape ratio of initial shape having influence the forgeability of forged product is analyzed. The optimal initial shape of clutch gear is designed using the results of DEFORM-3D and the artificial neural network (ANN). The initial shape through the detail analysis results, such as metal flow, distributions of strain can be obtained.

중공소재에 의한 스퍼어기어의 냉간단조에 관한 연구 (A Sudy on the Cold Forging of Spur Gears form Hollow Cylindrical Billets)

  • 최재찬;김창호;허관도;최영
    • 한국정밀공학회지
    • /
    • 제12권8호
    • /
    • pp.63-72
    • /
    • 1995
  • Closed-die forging of spur gears with hollow cylindrical billet has been analysed by using the upper-bound method. A kinematically admissible velocity field has been developed, wherein, an involute curve has been introduced to represent the forging die profile. In the analysis, the deformation region has been divided into nine zones. A constant frictional stress has been assumed on the contacting surfaces. Utilizing the formulated velocity field, numerical calculations have been carried out to investigate the effects of various parameters, such as module, number of teeth and friction factor, on the forging of spur gears. Hardness and accuracy of forged gears are measured. The following results have been obtained: (1) It is verified that an axisymmetric deformation zone exists between root circle and center of gear through forged gears. (2) The average relative forging pressure is predominantly dependent on the number of teeth and increases near the final filling stage as the addendum modification coefficient increases. (3) Close agreement was found between the predicted values of forging load and those obtained from experimental results.

  • PDF

다단냉간단조 비가공 타입에서 볼하우징 인서트 다이의 금형설계 검증 (Mold-design Verification of Ball Housing Insert Die in Non Processing Type Multi-stage Cold Forging)

  • 황원석;최종원;정의은;강명창
    • 한국기계가공학회지
    • /
    • 제20권12호
    • /
    • pp.8-15
    • /
    • 2021
  • Cold forging is a method in which molding is performed at room temperature. It has a high material recovery rate and dimensional precision and produces excellent surface quality, and it is mainly used for the production of bolted or housing products. The lifespan of cold forging molds is generally determined by the wear of the mold, plastic deformation of the mold, and fatigue strength. Cold forging molds are frequently damaged due to fatigue destruction rather than wear and plastic deformation in a high-temperature environment as it is molded at room temperature without preheating the raw material and mold. Based on the results analyzed through FEM, an effective mold structure design method was proposed by analyzing the changes in tensile and compressive stresses on molds according to the number of molds and reinforcement rings and comparing the product geometry and mold stress using three existing mold models.

다단 비축대칭 부품의 단조 공정설계를 위한 단조품설계 자동화 (Development of Automated forging Design System for Forging Process Design of Stepped Asymmetric Parts)

  • 조해용;허종행;민규식
    • 한국정밀공학회지
    • /
    • 제17권3호
    • /
    • pp.102-107
    • /
    • 2000
  • This study describes computer-aided design system for stepped asymmetric forgings. To establish the appropriate process sequence, an integrated approach based on a rule-base system was accomplished. This system has four modules, which are undercut prevention module, shape cognition module, 3D modelling module and corner/fillet correction module. These modules can be used independently or at all. The proposed shape cognition method could be widely used in forging design of asymmetric parts.

  • PDF

비축대칭 제품의 냉간단조 공정설계시스템에 관한 연구 (A Study on the Automated Process Planning System for Cold Forging of Non-axisymmetric Parts)

  • 이봉규;조해용;권혁홍
    • 한국정밀공학회지
    • /
    • 제19권2호
    • /
    • pp.195-202
    • /
    • 2002
  • An automated process planning system for cold forging of non-axisymmetric parts of comparatively simple shape was developed in this study. Programs for the system have been written with Visual LISP in the AutoCAD using a personal computer and are composed of four main modules such as input module, shape cognition and shape expression module, material diameter determination module and process planning module. The design rules and knowledges for the system are extracted from the plasticity theories, handbook, relevant reference and empirical knowledge of field experts. Generally, in forging, only front view is needed for expression of axisymmetric parts, but non-axisymmetric parts need front and plane view. At the plane, this system cognizes the external shape of non-axisymmetric, parts - number of sides of regular polygon and radius of a circle circumscribing the polygon of n sides. At the front view, the system perceives diameter of axisymmetric portions and height of primitive geometries such as polygon, cylinder, cone, concave, convex, etc.

다단 냉간단조품의 자동공정설계시스템 (Automated Forming Sequence Design System for Multistage Cold Forging Parts)

  • Park, J.C.;Kim, B.M.;Kim, S.W.;Kim, H.K.
    • 한국정밀공학회지
    • /
    • 제11권4호
    • /
    • pp.77-87
    • /
    • 1994
  • This paper deals with an automated forming sequence design system by which designers can determine desirable operation sequences even if they have little experience in the design of cold forging process. The forming sequence design in the cold forging is very important and requires many kinds of technical and empirical knowledge. They system isproposed, which generates forming sequence plans for the multistage cold forging of axisymmtrical solid products. Since the process of metal forming can be considered as a transformation of geometry, treatment of the geometry of the product is a key in planning process. To recognize the geometry of the product section, section entity representation and primitive geometries were used. Section entity representation can be used for the calculation of maximum diameter, maximum height, and volume. Forming sequence for the part can be determined by means of primitive geometries such as cylinder, cone, convex, and concave. By utilizing this geometrical characteristics (diameter, height, and radius), the product geometry is expressed by a list of the priitive geometries. Accordingly the forming sequence design is formulated as the search problem which starts with a billet geometry and finishes with a given product one. Using the developed system, the sequence drawing with all dimensions, which includes the proper sequence of operations for the part, is generated under the environment of AutoCAD. Based on the results of forming sequence, process variables(strain, punch pressure, die inner pressure, and forming load) are determined.

  • PDF

준축대칭 제품의 냉간단조 공정설계 및 금형설계 자동화 시스템 개발 (An Automated Process Planning and Die Design System for Quasi-axisymmetric Cold Forging Product)

  • 박종옥;이준호;정성윤;김철;김문생
    • 한국정밀공학회지
    • /
    • 제19권1호
    • /
    • pp.107-118
    • /
    • 2002
  • This paper deals with an automated computer-aided process planning and die design system by which designer can determine operation sequences even if they have a little experience in process planning and die design of quasi-axisymmetric cold forging product by cold former working. The approach to the system is based on knowledge-based rules and a process knowledge base consisting of design rules is built. Knowledge for the system is formulated from plasticity theories, empirical results and the empirical knowledge of field experts. Programs for the system have been written in AutoLISP for the AutoCAD using a personal computer. An attempt is made to link programs incorporating a number of expert design rules with the process variables obtained by commercial FEM softwares, DEFORM and ANSYS, to form a useful package. The system is composed of three main modules and five sub-modules. The process planning and die design module considers several factors, such as the complexities of preform geometry, punch and die profiles, specifications of available cold farmer, and the availability of standard parts. As the system using 2D geometry recognition is integrated with the technology of process planning, die design, and CAE analysis, the standardization of die parts for wheel bolt requiring cold forging process is possible. The developed system makes it possible to design and manufacture quasi-axisymmetric cold forging product more efficiently.

헬리컬 기어의 냉간단조에 관한 상계해석 (II) (Upper-bound Analysis for Cold Forging of Helical Gear ( II ))

  • 최재찬;탁성준;최영
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.144-149
    • /
    • 1996
  • In this paper, the clamping type forging of helical gears has been investigated. Clamping type forging is an operation in which the product is constrained to extrude sideways through an orifice in the container wall. Punch is cylindrical shaped. The punch compresses a cylindrical billet placed in a die insert. As a consequence the material flows in a direction perpendicular to that of punch movement. The forging has been analysed by using the upper-bound method. A kinematically admissible velocity field has been developed, wherein, an involute curve has been introduced to represent tooth profile of the gear. Numerical calculations have been carried out to investigate the effects of various parameters, such as module, number of teeth, helix angle, friction factor and initial height of billet on the forging of helical gears.

  • PDF

A STUDY ON DISTORTION OF BEVEL GEARS AND DIE INDUCED BY FORGING AND HEAT TREATMENT

  • Cho J.R.;Kang W.J.;Kim M.G.;Lee J.H.;Lee Y.S.;Bae W.B.
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 The 8th Asian Symposium on Precision Forging ASPF
    • /
    • pp.73-79
    • /
    • 2003
  • Recently many kinds of gears have been produced by forging in order to enhance the mechanical properties of the gears and the productivity of the process. Developments in forging technology are the reason for the increased usage. However, a critical problem of the forged gears is the dimensional change or distortion caused by elastic recovery after forging, and relief of the residual stresses during subsequent heat treatments. Distortion is of great concern to the manufacturers of precision parts, because it influences directly the dimensional accuracy and the grade of carburized bevel gears. In the present paper, distortion due to cold forging and heat treatment of bevel gears is investigated. Distortions of forged gears, machined gears and die are measured and compared. Numerical analysis is used to simulate the complete cold forging process and heat treatment process for the machined gears and shows good agreement with the experimental measurements.

  • PDF