• Title/Summary/Keyword: Precision Press

Search Result 500, Processing Time 0.02 seconds

Pulse-Pre Pump Brillouin Optical Time Domain Analysis-based method monitoring structural multi-direction strain

  • Su, Huaizhi;Yang, Meng;Wen, Zhiping
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.2
    • /
    • pp.145-155
    • /
    • 2016
  • The Pulse-Pre Pump Brillouin Optical Time Domain Analysis (PPP-BOTDA) technique is introduced to implement the multi-direction strain measurement. The monitoring principle is stated. The layout scheme of optical fibers is proposed. The temperature compensation formula and its realizing method are given. The experiments, under tensile load, combined bending and tensile load, are implemented to validate the feasibility of the proposed method. It is shown that the PPP-BOTDA technique can be used to discriminate the multi-direction strains with high spatial resolution and precision.

Thin-walled composite steel-concrete beams subjected to skew bending and torsion

  • Giussani, Francesca;Mola, Franco
    • Steel and Composite Structures
    • /
    • v.9 no.3
    • /
    • pp.275-301
    • /
    • 2009
  • The long-term behaviour of simply supported composite steel-concrete beams with deformable connectors subjected to skew bending and torsion is presented. The problem is dealt with by recurring to the displacement method, assuming the bending and torsional curvatures and the longitudinal deformations of each sectional part as unknowns and obtaining a system of differential and integro-differential equations. Some solving methods are presented, in order to obtain exact and approximate solutions and evaluate the precision of the approximate ones. A case study is then presented. For the sake of clearness, the responses of the composite beam under loads applied in different directions are studied separately, in order to correctly evaluate the effects of each load condition.

An alternative method for estimation of annual extreme wind speeds

  • Hui, Yi;Yang, Qingshan;Li, Zhengnong
    • Wind and Structures
    • /
    • v.19 no.2
    • /
    • pp.169-184
    • /
    • 2014
  • This paper presents a method of estimation of extreme wind. Assuming the extreme wind follows the Gumbel distribution, it is modeled through fitting an exponential function to the numbers of storms over different thresholds. The comparison between the estimated results with the Improved Method of Independent Storms (IMIS) shows that the proposed method gives reliable estimation of extreme wind. The proposed method also shows its advantage on the insensitiveness of estimated results to the precision of the data. The volume of extreme storms used in the estimation leads to more than 5% differences in the estimated wind speed with 50-year return period. The annual rate of independent storms is not a significant factor to the estimation.

RVDT Phase Error Compensation for Absolute Displacement Measurement (절대 변위 측정용 RVDT의 위상 오차 보상)

  • Shin Dong-Yun;Yang Yoon-Gi;Lee Chang-Su
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.7
    • /
    • pp.658-665
    • /
    • 2006
  • RVDT is a transducer that presents rotary phase angle according to the displacement of eccentric rotor such as press machine. However a study on the phase error of RVDT that affects precision is not enough. This paper analyzes RVDT phase error and obtains compensation curves with serial or parallel resistance through simulation. First, error compensation procedure that analyses errors due to the unbalance of reference inductances of each pole and uses parallel resistance as a compensation is proposed. Second, error compensation procedure due to the amplitude unbalance of the sensor driving currents is examined by serial compensation resistance. Experimentally, we got stable RVDT with phase error under $1^{\circ}$ by the proposed method.

A STUDY ON CENTER THINNING IN ROTARY FORGING OF CIRCULAR PLATE

  • Choi, Seo-Gou;Oh, Hung-Kuk
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.10a
    • /
    • pp.86-94
    • /
    • 1995
  • The rotary forging process has a potential for producing high-precision parts because of smaller forging forces and incrementally controlled deformation, especially in cold forging of intricate parts to net shape. But while thin circular plate are made by rotary forging, center thinning and fracture will occur under given conditions. The trouble has seriously influenced the quality of products and the spreading of this technique. This paper intends to explain the phenomenon of center thinning and gives a criterion of it. In order to confirm the validity of the proposed criterion, experiments have been carried out by using the rotary forging press which has been designed and constructed in our laboratory.

  • PDF

A Study of Dynamic Characteristic far Resistance Spot Welding Process Using Servo-gun System (서보건 이용 시 저항 점 용접의 동특성 분석에 관한 연구)

  • Baek Jung-Yeub;Lee Jong-Gu;Rhee Se-Hun
    • Journal of Welding and Joining
    • /
    • v.23 no.3
    • /
    • pp.40-46
    • /
    • 2005
  • Air gun has been one of the good tools to press two sheet metals. However, it is not easy to control the acting force precisely. A Servo-gun is a good tool to control the acting force on the workpiece comparing with the air gun. Servo-gun has a higher tensile shear strength and lower indentation depth as well as smaller spatter. Dynamic resistance was obtained according to the acting force and welding current. As the acting force was changed during welding, the welding quality was increased.

Optimization of spring back in U-die bending process of sheet metal using ANN and ICA

  • Azqandi, Mojtaba Sheikhi;Nooredin, Navid;Ghoddosian, Ali
    • Structural Engineering and Mechanics
    • /
    • v.65 no.4
    • /
    • pp.447-452
    • /
    • 2018
  • The controlling and prediction of spring back is one of the most important factors in sheet metal forming processes which require high dimensional precision. The relationship between effective parameters and spring back phenomenon is highly nonlinear and complicated. Moreover, the objective function is implicit with regard to the design variables. In this paper, first the influence of some effective factors on spring back in U-die bending process was studied through some experiments and then regarding the robustness of artificial neural network (ANN) approach in predicting objectives in mentioned kind of problems, ANN was used to estimate a prediction model of spring back. Eventually, the spring back angle was optimized using the Imperialist Competitive Algorithm (ICA). The results showed that the employment of ANN provides us with less complicated and time-consuming analytical calculations as well as good results with reasonable accuracy.

Optimization of Ni2+ adsorption on 13X zeolite using box-behnken design

  • Jafari, Shoeib;Bandarchian, Farideh
    • Advances in environmental research
    • /
    • v.6 no.3
    • /
    • pp.217-227
    • /
    • 2017
  • In this study, the elimination of $Ni^{2+}$ using 13X sorbent due to an electrostatic interaction was reported. The significant factors including pH, time and 13X sorbent amount were investigated using Box-Behnken design (BBD). In the optimum experimental conditions, the linear rang and limit of detection of the proposed method were 0.1-20 and $0.102mg\;L^{-1}$, respectively. The precision as RSD% was 1.3% for concentration of $2mg\;L^{-1}$. Concerning the excellent recoveries in a short time with highly efficient sample clean-up and removal, this method may be a very powerful and innovative future sample removal technique. To the best of our knowledge, this is the first report on using BBD for optimizing the parameters affected the removal of $Ni^{2+}$ by 13X zeolite sorbent.

Mechanical features of cable-supported ribbed beam composite slab structure

  • Qiao, W.T.;Wang, D.;Zhao, M.S.
    • Steel and Composite Structures
    • /
    • v.25 no.5
    • /
    • pp.523-534
    • /
    • 2017
  • Cable-supported ribbed beam composite slab structure (CBS) is proposed in this study. As a new cable-supported structure, it has many merits such as long span availability and cost-saving. Inspired by the previous research on cable-supported structures, the fabrication and construction process are developed. Pre-stress design method based on static equilibrium analysis is presented. In the algorithm, the iteration convergence can be accelerated and the calculation result can be kept in an acceptable precision by setting a rational threshold value. The accuracy of this method is also verified by experimental study on a 1:5 scaled model. Further, important parameters affecting the mechanical features of the CBS are discussed. The results indicate that the increases of sag-span ratio, depth of the ribbed beam and cable diameter can improve the mechanical behavior of the CBS by some extent, but the influence of strut sections on mechanical behavior of the CBS is negligible.

Analysis of orthotropic plates by the two-dimensional generalized FIT method

  • Zhang, Jinghui;Ullah, Salamat;Gao, Yuanyuan;Avcar, Mehmet;Civalek, Omer
    • Computers and Concrete
    • /
    • v.26 no.5
    • /
    • pp.421-427
    • /
    • 2020
  • In this study, the two-dimensional generalized finite integral transform(FIT) approach was extended for new accurate thermal buckling analysis of fully clamped orthotropic thin plates. Clamped-clamped beam functions, which can automatically satisfy boundary conditions of the plate and orthogonality as an integral kernel to construct generalized integral transform pairs, are adopted. Through performing the transformation, the governing thermal buckling equation can be directly changed into solving linear algebraic equations, which reduces the complexity of the encountered mathematical problems and provides a more efficient solution. The obtained analytical thermal buckling solutions, including critical temperatures and mode shapes, match well with the finite element method (FEM) results, which verifies the precision and validity of the employed approach.