• Title/Summary/Keyword: Precision Positioning Stage

Search Result 133, Processing Time 0.026 seconds

A Study on the Optimal Structural Design and Computer Simulation of Delta Stage for ultra Precision Positioning (초정밀위치결정을 위한 델타스테이지의 최적 설계 및 컴퓨터 시뮬레이션에 관한 연구)

  • 김재열;김영석;송찬일;곽이구;한재호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.221-225
    • /
    • 2001
  • Recently, high accuracy and high precision are required in various industrial fields that are composed of semiconductor manufacturing apparatus and ultra precision positioning apparatus and information system and so on. The positioning technology is a very important one among them. This technology has been rapidly developed, its field needs for positioning accuracy to high as submicron. It is expected that accuracy with 10 nm in precision working and accuracy with 1 nm in ultra precision working are reached at the beginning of 2000s. Recently, to accomplish this positioning technology, many researches are concerned about it and make efforts it. This paper contain design technology of ultra precision 2-axis(X-Y Delta) stage for materialize to positioning accuracy with submicron, where, Delta stage is design as optimum against load and disturbance. And computer simulation is performed for stability and dynamic characteristic of Delta stage.

  • PDF

Modeling and Vibration Control of the Precision Positioning Stage with Flexible Hinge Mechanism (유연힌지형 정밀스테이지의 모델링 및 진동제어)

  • Kim, J.I.;Hwang, Y.S.;Kim, Y.S.; Kim, I.S.; Kim, K.B.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.239-244
    • /
    • 2009
  • This paper suggests a precision positioning control technique of a precision positioning stage with coupling effects. The precision positioning stage is supported by four flexible spring hinges and driven by two piezoelectric actuators. The dynamic characteristics of the precision positioning stage is modeled and identified by the FEM analysis. The dynamic characteristics of the stage are also identified by the frequency domain modeling technique based on the experimental data. Reliability of two modeling methods is examined by comparing the numerically and experimentally produced responses of the stage. This paper proposes a sliding mode control technique with integrator to improve the tracking ability of the precision positioning stage to the complex input signal using. To demonstrate the effectiveness of the proposed modeling schemes and control algorithm, experiment validations are performed.

  • PDF

Simulation and Control performance evaluation of Ultra-Precision Single Plane X-Y Stage (초정밀 평면 X-Y 스테이지의 시뮬레이션 및 제어성능 평가)

  • 박기형;김재열;곽이구
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.5
    • /
    • pp.65-72
    • /
    • 2002
  • In this study, actuator, sensor, guide, power transmission element and control method are considered for ultra-precision positioning apparatus. Through previous process, single plane X-Y stage with ultra-precision positioning is manufactured. Global stage for the purpose of materialization with robust system, is combined by using AC servo motor and ball screw and rolling guide. And ultra-precision positioning system is developed by micro stage with elastic hinge type and piezo element. global servo and micro servo for the purpose of materialization positioning accuracy with nm(nanometer) are controlled simultaneously by using incremental encoder and laser interferometer as displacement measurement sensor. Through previous process, ultra-precision positioning system(100mm stroke and $\pm$ l0nm positioning accuracy) with single plane X-Y stage are materialized.

Simulation and Control performance evaluation of Ultra-Precision Single Plane X-Y Stage (초정밀 평면 X-Y 스테이지의 시뮬레이션 및 제어성능 평가)

  • 곽이구;김재열;한재호;김영석;안재신;노기웅
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.422-428
    • /
    • 2002
  • In this study, actuator, sensor, guide, power transmission element and control method are considered for ultra-precision positioning apparatus. Through previous process, single plane X-Y stage with ultra-precision positioning is manufactured. Global stage for the purpose of materialization with robust system, is combined by using AC servo motor and ball screw and rolling guide. And ultra-precision positioning system is developed by micro stage with elastic hinge type and piezo element. global servo and micro servo for the purpose of materialization positioning accuracy with nm(nanometer) are controlled simultaneously by using incremental encoder and laser interferometer as displacement measurement sensor. Through previous process, ultra-precision positioning system (100mm stroke and ${\pm}$ 10nm positioning accuracy) with single plane X-Y stage are materialized.

  • PDF

The Development of Optimal Design and Control System for Ultra-Precision Positioning on Single Plane X-Y Stage (평면 X-Y 스테이지의 초정밀 위치결정을 위한 최적 설계 및 제어시스템 개발)

  • 한재호;김재열;심재기;김창현;조영태;김항우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.348-352
    • /
    • 2002
  • a basis such as IT(Information Technology), NT(Nano Technology) and BT(Bio Technology). Recently, NT is applied to various fields that are composed of science, industry, media and semiconductor-micro technology. It has need of IT that is ultra-precision positioning technology with strokes of many hundreds mm and maintenance of nm precision in fields of ultra micro process, ultra precision measurement, photo communication part and photo magnetic memory. This thesis represents optimal design on ultra-precision positioning with single plane X-Y stage and development of artificial control system for adequacy of industrial demand. Also, dynamic simulation on global stage is performed by using ADAMS (Automated Dynamic Analysis of Mechanical System) for the purpose of grasping dynamic characteristic on user designed X-Y global stage. The error between displacements from micro stage and from FEM(Finite Element Method) is 3.53% by verifications of stability on micro stage and control performance. As maximum Von-mises stress on hinge of micro stage is 5.981kg/mm$^2$ that is 1.5% of yield stress, stability on hinge is secured. Preparing previous results, optimal design of micro stage can be possible, and reliance of results with FEM can be secured.

  • PDF

A Study on the Development and Compensation of precision Multi-Axis Positioning System (초정밀 다축 위치제어장치 개발 및 보정에 관한 연구)

  • 정상화;차경래
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.455-458
    • /
    • 2002
  • In recent years, precision positioning stage is demanded fur some industrial fields such as semi conductor lithography, ultra precision machining and fabricating of nano structure. In this research, precision multi-axis positioning stage, which consists of pzt actuator, flexure, and capacitance gauge, is designed and developed. The performance of it such as 3-axis positioning, characteristic of motion and resolution is verified.

  • PDF

A Study on the Improvement of Positioning accuracy of ultra-precision stage (초정밀스테이지의 위치결정정도 향상에 관한 연구)

  • 황주호;송창규;박천홍;이찬홍
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.465-468
    • /
    • 2001
  • An aerostatic stage has frictionless behavior, so it has a advantage of investigation into positioning characteristics. A one-dimensional aerostatic ceramic stage with ballscrew driven and laser scale feedback system is manufactured, aiming at investigating positioning characteristic of ultra-precision stage. We confirm, this ceramic aerostatic stage has a 10nm micro resolution, and can be reduced mean of position error by compensation of numeric control command. By means of analyzing relationship of position error and change of temperature, we build a on-line compensation algorithm of position error from the measured temperature data. So we can improve repeatability of ultra-precision stage up to 34%($0.095{\mu}$) of the normal condition.

  • PDF

Ultra precision positioning system for Servo Motor-Piezo actualtor using dual servo loop (이중서보제어루프를 통한 서보모터-압전구동기의 초정밀위치결정 시스템)

  • 이동성;박종호;박희재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.437-441
    • /
    • 1995
  • In this paper, the ultra precision positioning system for servo motor and piezo actuator using dual servo loop control has been developed. For positioning system having long distance with ultra precision, the combination of global stage and micro stage is required. Servo moter and ball screw are used as a master stage and piezo acuator as a fine stage. By using this system, an positional precision witin .+-. 30nm has been achieved at dual servo loop control. When using micro stage, an positional precision within .+-. 10nm has been achieved. This result can be applied to develop semiconductor equipment such as wafer stepper.

  • PDF

Development of Nano Positioning Stage using PZT Actuator (압전 액츄에이터를 이용한 초정밀 위치제어장치 개발)

  • 정상화;차경래
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.214-218
    • /
    • 2002
  • In recent years, precision positioning stage is demanded for some industrial fields such as semi-conductor lithography, ultra precision machining, and fabricating of nano structure. In this research, precision multi-axis positioning stage, which consists of pzt actuator, flexure, and capacitance gauge, is designed and developed. The performance of 3-axis positioning, characteristics of motion and resolution are verified.

  • PDF