• 제목/요약/키워드: Precision Position Control

검색결과 740건 처리시간 0.027초

초정밀 선형 모터 시스템의 적응형 힘리플 보상과 정밀 트랙킹 제어 (Adaptive Force Ripple Compensation and Precision Tracking Control of High Precision Linear Motor System)

  • 최영만;권대갑;이문구
    • 한국정밀공학회지
    • /
    • 제22권12호
    • /
    • pp.51-60
    • /
    • 2005
  • This paper describes a robust control scheme for high-speed and long stroke scanning motion of high precision linear motor system consisting of linear motor, air bearing guide and position measurement system using heterodyne interferometer. Nowadays, semiconductor process and inspection of wafer or LCD need high speed and long travel length for their high throughput and extremely small velocity fluctuations or tracking errors. In order to satisfy these conditions, linear motor system are widely used because they have large thrust force and do not need motion conversion mechanisms such as ball screw, rack & pinion or capstan with which the system are burdened. However linear motors have a problem called force ripple. Force ripple deteriorates the tracking performances and makes periodic position errors. So, force ripple must be compensated. To maximize the tracking performance of linear motor system, we propose the control scheme which is composed of a robust control method, Time Delay Controller (TDC) and a feedforward control method, Zero Phase Error Tracking Control (ZPETC) for accurate tracking a given trajectory and an adaptive force ripple compensation (AFC) algorithm fur estimating and compensating force ripple. The adaptive ripple compensation is continuously refined on the basis of tracking error. Computer simulation results based on modeled parameters verify the effectiveness of the proposed control scheme for high-speed, long stroke and high precision scanning motion and show that the proposed control scheme can achieve a sup error tracking performance in comparison to conventional TDC control.

속도 추정기를 이용한 전동기 구동 시스템의 정밀한 위치 및 순시 속도 관측기의 개발 (Accurate Position and Instantaneous Speed Observer for Motor Drive System using Novel Speed Estimator)

  • 김희욱;김용석;설승기
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제48권11호
    • /
    • pp.625-631
    • /
    • 1999
  • In this paper, an accurate position control using new estimator which estimates the instantaneous speed and accurate position with a low precision shaft encoder is proposed. The overall performance of position control system is strongly depend on the accuracy of the position information and the performance of the speed controller in low speed range. In this paper the position and speed of the motor are obtained from Kalman filter which is an optimal full order estimator. This estimator has good performance even in very low speed range include standstill. The simulation and experimental results confirm the validity of the proposed estimation and control scheme.

  • PDF

Position Estimator Employing Kalman Filter for PM Motors Driven with Binary-type Hall Sensors

  • Lee, Dong-Myung
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권4호
    • /
    • pp.931-938
    • /
    • 2016
  • Application of vector control scheme for consumer products is enlarging to improve control performance. For the field-oriented control, accurate position detection is essential and generally requires expensive sensors. On the other hand, cost-reduction is important in home appliances, so that binary-type Hall-effect sensors are commonly used rather than using an expensive sensor such as an encoder. The control performance is directly influenced by the accuracy of the position information, and there exist non-uniformities related to Hall sensors in electrical and mechanical aspects, which result in distorted position information. Therefore, to get high-precision position information from low-resolution Hall sensors, this paper proposes a new position estimator consisting of a Kalman filter and feedforward compensation scheme, which generates a linearly changing position signal. The efficacy of the proposed scheme is verified by simulation and experimental results carried out with a 48-pole permanent magnet motor.

The Improvement of Position Precision for Hybrid Linear Pulse Motor

  • Yoon, Shin-Yong;Baek, Soo-Hyun;Kim, Yong;Kim, Cherl-Jin
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제11B권2호
    • /
    • pp.28-33
    • /
    • 2001
  • The subject of this study is to improve the position performance of the linear motion for hybrid type Linear Pulse Motor (HLPM). Generally, there are two applicable methods to ensure precise position control ; a good processing method. This paper is suggested an electrical 125 microstep driving method so as to achieves the excellent control performance, besides the small mechanical manufacture of teeth pitch. The compensation method of digital PI control is apply to step response of stable position control, step error, vibration suppression and the approach to high stability, and the Ziegler-Nichols tuning method is applied to the proper design of control parameter. The proposed control method has been verified by simulation results of the suitable gain and phase margin of bode plot, and from experiment result of step response.

MPWM을 이용한 공압 실린더의 지능제어 (Intelligent control of pneumatic actuator using MPWM)

  • 송인성;표성만;안경관;양순용;이병룡
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.530-535
    • /
    • 2002
  • Pneumatic control system has been applied to build many industrial automation systems. But most of them are sequence control type because of their low costs, safety, reliability, etc. Pneumatic servo system is rarely applied to real industrial fields because accurate position control is very difficult due to its nonlinearity and compressibility of air. In pneumatic servo control system, a pneumatic servo valve can be applied, But it is very expensive and has no advantage of low cost compared with a common pneumatic system. This paper is concerned with the accurate position control of a rodless pneumatic cylinder using on/off solenoid valve. A novel Intelligent Modified Pulse Width Modulation(MPWM) is newly proposed. The control performance of this pneumatic cylinder depends on the external loads. To overcome this problem, switching of control parameter using artificial neural network is newly proposed, which estimates external loads on rodless pneumatic cylinder using this training neural network. As an underlying controller, a state feedback controller using position, velocity and acceleration is applied in the switching control the system. The effectiveness of the proposed control algorithms are demonstrated through experiments nth various loads.

  • PDF

퍼지 추론 시스템 기반의 다중 신경회로망 제어기를 이용한 초음파 모터의 위치제어 (Fuzzy Inference System Based Multiple Neural Network Controllers for Position Control of Ultrasonic Motor)

  • 최재원;민병우;박운식
    • 한국정밀공학회지
    • /
    • 제18권4호
    • /
    • pp.209-218
    • /
    • 2001
  • Ultrasonic motors are newly developed motors which are expected to be useful as actuators in many practical systems such as robot arms or manipulators because of several advantages against the electromagnetic motors. However, the precise control of the ultrasonic motor is generally difficult due to the absence of appropriate and rigorous mathematical model. Furthermore, owing to heavy nonlinearity, the position control of a pendulum system driven by the ultrasonic motor has a problem that control method using multiple neural network controllers based on a fuzzy inference system that can determine the initial position of the pendulum in the beginning of control operation. In addition, and appropriate neural network controller that has been learned to operate well at the corresponding initial position is adopted by switching schemes. The effectiveness of the proposed method was verified and evaluated from real experiments.

  • PDF

리니어 모터를 이용한 고속 고정밀 갠트리형 소형 데스크탑 로봇 개발 (Development of small gantry desktop robot of high speed and high precision using linear motor)

  • 조성훈;최우천;김용일
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1866-1870
    • /
    • 2005
  • Typical small desktop robots have limied application due to their intrinsic feaures like friction, backlash, etc. However, a newly developed small gantry desktop robot needs smaller footprint and shows better performance in position accuracy, velocity, and acceleration. In order to achieve such results, synchronization control of two axes, position compensation methods in plane are suggested.

  • PDF

레졸버 기반의 절대위치 검출 센서 드라이버의 FPGA 구현 (FPGA Implementation of Resolver-based Absolute Position Sensor Driver)

  • 전지혜;신동윤;양윤기;황진권;이창수
    • 제어로봇시스템학회논문지
    • /
    • 제13권10호
    • /
    • pp.970-977
    • /
    • 2007
  • Absolute position detector which is one of the major equipment in the field of factory automation, not only perceives the absolute position of the rotary machine but also outputs switch data according to the given angle. Absolute position detector is composed of sensor module and its controller. In this paper, a sensor driver is implemented using FPGA with VHDL. This chip has a less form factor than conventional circuit. A test shows reliable precision within THD(total harmonic distortion) of 0.2% which can be applicable commercially. Also, FPGA-based phase error compensation methods were newly discussed. In the future, more research will be conducted to enhance the precision by the introduction of 3-phase transformer.

Autonomous Sensor Center Position Calibration with Linear Laser-Vision Sensor

  • Jeong, Jeong-Woo;Kang, Hee-Jun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제4권1호
    • /
    • pp.43-48
    • /
    • 2003
  • A linear laser-vision sensor called ‘Perception TriCam Contour' is mounted on an industrial robot and often used for various application of the robot such as the position correction and the inspection of a part. In this paper, a sensor center position calibration is presented for the most accurate use of the robot-Perceptron system. The obtained algorithm is suitable for on-site calibration in an industrial application environment. The calibration algorithm requires the joint sensor readings, and the Perceptron sensor measurements on a specially devised jig which is essential for this calibration process. The algorithm is implemented on the Hyundai 7602 AP robot, and Perceptron's measurement accuracy is increased up to less than 1.4mm.

Vision을 이용한 MLGA Chip 장착시스템 개발 (Vision based MLGA Chip Mounting System)

  • 노병옥;유영기;김안식;김영수
    • 한국정밀공학회지
    • /
    • 제18권11호
    • /
    • pp.161-167
    • /
    • 2001
  • In this study, the control of mounting system for MLGA package was developed using machine vision for the control of rotation position compensation and mounting position of X-Y table. Two types of materials, polymer and alumina, were used for the dielectric insulator of the MLGA. The illumination system and the algorithm of position compensation which is suitable for these materials was developed. We found that the mounting accuracy enough to the degree of${\pm}10{\mu}m$ when MLGA was mounted on the PCB.

  • PDF