• Title/Summary/Keyword: Precision Position Control

Search Result 740, Processing Time 0.058 seconds

High Precision Position Synchronous Control in a Multi-Axes Driving System (다축 구동 시스템의 정밀 위치동기 제어(I))

  • Byun, Jung-Hoan;Jeong, Seok-Kwon;Yang, Joo-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.7
    • /
    • pp.115-121
    • /
    • 1996
  • Multi-axes driving system is more suitable for FMS(Flexible Manufacturing System) compared with a conventional single-azis driving system. It has some merits such as flexibility in operation, improvement of net working rate, maintenance free because of no gear train, etc. However, studies on position synchronous control for high precision in the multi-axes driving system are not enough. In this paper, a new method of position synchronous control is suggested in order to apply to the multi- axes driving system. The proposed method is structured very simply using speed and position controller based on PID control law. Especially, the position controller is designed to keep position error to minimize by controlling either speed of two motors. The effectiveness of the proposed method is successfully confirmed through several experiments.

  • PDF

Development of the Small-displacement-movement of a Pneumatic piston and the Hybrid Control Algorithm for Precision Position Control (정밀 위치제어를 위한 공압 피스톤의 미소변위 이송방법 및 혼합 제어 알고리즘 개발)

  • Roh, Chul-Ha;Kim, Yeung-Shik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.7
    • /
    • pp.40-45
    • /
    • 2001
  • This paper proposes a methodology for the small-displacement-movement of a piston and develops a hybrid control algorithm for the precision position control of a pneumatic rodless cylinder. The pneumatic system uses the voltage-proportional solenoid valves to minimum valve switching since the on/off type valves are create diffculties for accurate position control and induce a lot of valve switching. For the accurate position control a methodology for the small-displacement-movement of the piston is developed and identified experimentally. The main consideration on the development of the hybrid control law is to eliminate a stick-slip phenomenon in the pneumatic control system. This paper addresses these critical issues and presents experimental results for the pneumatic control system.

  • PDF

A Study on the Development of Hydraulic Cylinder with Magnetic Sensors for Detecting Absolute and Precise Position (자기센서를 이용한 절대위치 검출형 고정도 유압 실린더 개발에 관한 연구)

  • 박민규;이민철;양순용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.156-160
    • /
    • 1997
  • This paper introdues the development of hydraulic cylinder with magnetic sensor detecting absolute and precise position for automation of excavator. The system which is developed can detect absolute position witha little displacement by using algorithm for recognizing datum points, 1/4 divider algorithm and high precision algorithm improved position precision and robustness to noise etc. The solenoid valve and PWM control using saw-toothed wave are used for absolute position control of cylinder, respectively

  • PDF

High Response and Precision Control of Electronic Throttle Controller Module without Hall Position Sensor for Detecting Rotor Position of BLDCM

  • Lee, Sang-Hun;Ahn, Jin-Woo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.1
    • /
    • pp.97-103
    • /
    • 2013
  • This paper describes the characteristics of Electronic Throttle Controller (ETC) module in BLDC motor without the hall sensor for detecting a rotor position. The proposed ETC control system, which is mainly consisted of a BLDC motor, a throttle plate, a return spring and reduction gear, has a position sensor with an analogue voltage output on the throttle valve instead of BLDC motor for detecting the rotor position. So the additional commutation information is necessarily needed to control the ETC module. For this, the estimation method is applied. In order to improve and obtain the high resolution for the position control, it is generally needed to change the gear ratio of the module or the electrical switching method etc. In this paper, the 3-phase switching between successive commutations is adapted instead of the 2-phase switching that is conventionally used. In addition, the position control with a variable PI gain is applied to improve a dynamic response during a transient period and reduce vibration at a stop in case of matching position reference. The mentioned method can be used to estimate the commutation state and operate the high-precision position control for the ETC module and the high response characteristics. The validity of the proposed method is examined through the experimental results.

Experimental Results of Adaptive Load Torque Observer and Robust Precision Position Control of PMSM (PMSM의 정밀 Robust 위치 제어 및 적응형 외란 관측기 적용 연구)

  • Go, Jong-Seon;Yun, Seong-Gu
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.3
    • /
    • pp.117-123
    • /
    • 2000
  • A new control method for precision robust position control of a PMSM (Permanent Magnet Synchronous Motor) using asymptotically stable adaptive load torque observer is presented in the paper. Precision position control is obtained for the PMSM system approximately linearized using the field-orientation method. Recently, many of these drive systems use the PMSM to avoid backlashes. However, the disadvantages of the motor are high cost and complex control because of nonlinear characteristics. Also, the load torque disturbance directly affects the motor shaft. The application of the load torque observer is published in [1] using fixed gain. However, the motor flux linkage is not exactly known for a load torque observer. There is the problem of uncertainty to obtain very high precision position control. Therefore, a model reference adaptive observer is considered to overcome the problem of unknown parameter and torque disturbance in this paper. The system stability analysis is carried out using Lyapunov stability theorem. As a result, asymptotically stable observer gain can be obtained without affecting the overall system response. The load disturbance detected by the asymptotically stable adaptive observer is compensated by feedforwarding the equivalent current which gives fast response. The experimental results are presented in the paper using DSP TMS320c31.

  • PDF

Computer Simulation and Control performance evaluation of Ultra Precision Positioning Apparatus using Piezo Actuator (Piezo Actuator를 이용한 초정밀 위치결정기구의 Computer Simulation 및 제어 성능평가)

  • 김재열;김영석;곽이구;한재호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.118-122
    • /
    • 2000
  • Recently, High accuracy and precision are required in various industrial field especially, semiconductor manufacturing apparatus, Ultra precision positioning apparatus, Information field and so on. Positioning technology is a very important one among them. For composition of this technology, the development of system with high speed and high resolution is needed. At start point and end position vibration must be repressed on this system for composition of position control. This vibration is arisen nose, is increased setting time, is reduced accuracy. Especially, repressed for the lead with high speed. The small actuator with high speed and high resolution is need to repression against this residual vibration. This actuator is, for example, piezo actuator, piezoelectric material that converting from electronic signal to mechanical force is adequate material, beacause of control of control to position and force. In this study, piezo electric material is used to actuator, ultra precision positioning apparatus with stage of hinge structure is designed, simulation is performed, control performance is tested by producing apparatus. For easy usage and stability in industrial field, we perform to simulation and to position control test by digital PID controller.

  • PDF

FUZZY POSITION/FORCE CONTROL OF MINIATURE GRIPPER DRVEN BY PIEZOELECTRIC BIMORPH ACTUATOR

  • Kim, Young-Chul;Chonan, Seiji;Jiang, Zhongwei
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.24.2-27
    • /
    • 1996
  • This paper is a study on the fuzzy force control of a miniature gripper driven by piezoelectric bimorph actuator. The system is composed of two flexible cantilevers, a stepping motor, a laser displacement transducer and two semiconductor force sensors attached to the beams. Obtained results show that the present artificial finger system works well as a miniature gripper, which produces approximately 0.06N force in the maximum. Further, the fuzzy position/force control algorithm is applied to the soft-handing gripper for stable grasping of a object. It revealed that the fuzzy rule-based controller be efficient controller for the stable drive of the flexible miniature gripper. It also showed that two semiconductor strain gauges located in the flexible beam play an important roles for force control, position control and vibration suppression control.

  • PDF

Precise Position Control of Piezoelectric Actuators without Nonlinear Hysteresis Model (비선형 히스테레시스 모델을 채용하지 않는 압전구동기의 정밀위치제어)

  • 송재욱;송하성;김호상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.189-193
    • /
    • 1996
  • Piezoelectric actuator is widely used in precision positioning applications due to its excellent positioning resolution. However, serious hysteresis nonlinearity of the actuator deteriorates its open loop positioning capability. Generally, a nonlinear hysteresis model is used in feedforward loop to improve positioning accuracy. In this study, however, a simple lead compensator is proposed as a substitution for a complex nonlinear hysteresis model and tested through experiments for precision position control.

  • PDF