• Title/Summary/Keyword: Precision Metal Processing

Search Result 101, Processing Time 0.026 seconds

A Study on the Wear Monitoring Technique for Diamond Core Drill (다이아몬드 코어 드릴의 마멸 검출에 관한 연구)

  • 유봉환
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.4 no.2
    • /
    • pp.38-45
    • /
    • 1995
  • The diagnosis and monitoring system of abnormal cutting condition is necessary to realize precision machining proces and factory automation, which are final goal of metal cutting in order to develop this system, theimage processing technique has been investigated in machining process. In theis paper, the measurement system of tool wear using computer vision is designed to detect the wear pattern by non-contact and direct method and get the realiable wear information about cutting tool. We measured the area of the side and front part of the diamond core dril which is used in 40kHz ultrasonic vibration machine.

  • PDF

Optimization of the Dirve for Lineaer-Guide Press (직선가이드프레스 구동부의 최적화)

  • 이영섭;황병복
    • Transactions of Materials Processing
    • /
    • v.9 no.2
    • /
    • pp.171-178
    • /
    • 2000
  • This paper is concerned with the optimization of the drive for linear-guide press which is one of mechanical presses. The design of linear-guide drive for a mechanical press is introduced and the drive for the linear-guide press is optimized for the improvement of load and velocity characteristics. As a result of optimization, the load capacity during stroke increases and the slide velocity decreases in working region, respectively. The new design could be suited to many applications in precision forming such as extrusion and the sheet metal-forming processes.

  • PDF

A study on the effect of clearance on shear surfac shape during shaving processing of high strength steel plate (SPFH590) using CAE (CAE를 활용한 고강도강판(SPFH590)의 셰이빙 가공 시 클리어런스가 전단면 형상에 미치는 영향에 관한 연구)

  • Si-Myung Sung
    • Design & Manufacturing
    • /
    • v.18 no.2
    • /
    • pp.23-28
    • /
    • 2024
  • The automobile industry is a wide range of related industries, including parts manufacturing and vehicle assembly, press processing is an essential element in making automobiles. Press processing is a processing method for metal sheets that has relatively high dimensional and shape precision and is suitable for mass production. It refers to processing by attaching a special tool, a mold, to a press machine. Recently, the automobile industry is attempting to reduce the weight of automobiles in order to reduce carbon emissions due to global warming, and the use of high-strength steel sheets, which are lighter than general structural steel sheets, is a natural trend. Shear processing is required to use high-strength steel, and the shape of the shear surface created by shear processing has a significant impact on the quality of the automobile. Therefore, various methods are being attempted to improve the share surface during shear processing. Among them, shaving processing is a method of shearing the primary shearing area again, and it is difficult to obtain an accurate answer because complex deformation occurs in the microscopic shear area. Therefore, in this study, the effect of machining allowance on shaving processing was analyzed using the finite element method using high-strength steel plate (SPFH590), and the differences were compared and examined through actual experiments under the same conditions.

A Study of Outsell Molding Technology for Thin-walled Plastic Part (박판 플라스틱 부품의 Outsert Molding 기술에 대한 연구)

  • Lee, S.H;Ko, Y.B.;Lee, J.W.
    • Transactions of Materials Processing
    • /
    • v.18 no.2
    • /
    • pp.177-182
    • /
    • 2009
  • A work of thin-walled outsell injection molding technology for a plastic part of moldframe applicable in a display product was performed in the present study. The thin-walled plastic part is one of the core parts in the display product, which supports and protects a light guide plate and back light unit from external environmental conditions. It globally has the shape of rectangular and surrounds the light guide plate and back light unit for each class of inch, however, the cross section of the part is not clear to define the thickness. This causes the difficult problem of injection molding itself for the part. Moreover, a metal outsell part makes a difficult problem in injection molding over it. Because the mold temperature control of the parts are not uniform in thickness direction due to the metal part. A careful injection melding analysis and injection mold design from the analysis results have to be proceeded to obtain a production of precision moldframe. Therefore, optimization for injection molding process and analysis of warpage characteristics were studied. Consequently, it was possible from the presented virtual manufacturing process that the manufacturing of precision thin-walled outsell moldframe.

Design and Implementation of Polymer-Light Emitting Diodes by using Nanocantact Printing (나노접촉 인쇄공정을 이용한 폴리머 유기정보표시소자 설계 및 구현)

  • Jo Jeong-Dai;Kim Kwang-Young;Lee Eung-Sug;Choi Byung-Oh
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1511-1513
    • /
    • 2005
  • The polymer-light emtting diodes(PLEDs) were comprised a design of OLED array, process develop by using ITO thin glass, and fabrication of PDMS stamp by using nanocontact printing. In the study, we describe a different approach for building OLEDs, which is based on physical lamination of thin metal electrodes supported by a PDMS stamp layer against an electroluminescent organic. We develop that devices fabricated in this manner have better performance than those constructed with standard processing techniques. The lamination approach avoids forms of disruption that can be introduced at the electrode organic interface by metal evaporation and has a reduced sensitivity to pinhole or partial pinhole defects. Also, it is easy to build patterned PLED with feature sizes into the nanometer regime. This method provides a new route to PLED for applications ranging from high performance displays to storage and lithography systems, and PLED can used for organic electronics and flexible display.

  • PDF

A Study on Improving The Coefficient of Utilization of Material in Deep Drawing Process (딥드로잉 공정에서 재료 이용률을 높이기 위한 연구)

  • Lee, Kyung-Won;Ban, Jae-Sam;Park, Young-Jin;Cho, Kyu-Zong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.4
    • /
    • pp.179-186
    • /
    • 2002
  • This paper is the study on improving the coefficient of utilization of material in deep drawing process. Cylindrical cup drawing process is widely used in sheet metal forming process. The blank shape is one of the important things in sheet metal forming process. It is produced for the bridge of blank in a blanking process. The coefficient of utilization of material is much effected by this bridge of blank. This study offered a new process method to reduce the loss of material. The new blank shape offered and manufactured by new process method is investigated by a finite element method and the experiment. Then the wrinkling, the punch load, the thickness distribution is observed. This result is different from the result of circular blank process. And it is got that the Max strain, the wrinkle and the height of the wrinkle are effected by the holding farce and the punch load. As a result. if the processing optimum condition is found, the loss of material will be reduced. It is necessary to research systematically about determining the optimum vague of process variables.

Forming of Circular Protrusion by Half-Piercing and its Application to Marking of Sheet Metal (하프피어싱에 의한 원형돌기의 성형 및 마킹공정에의 응용)

  • Jung, H.K.;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.21 no.3
    • /
    • pp.202-206
    • /
    • 2012
  • Marking is a process that engraves letters or a pattern onto the surface of sheet metal. During marking, it is important to set the proper working conditions for clarity of the letters. In this study a simple case for forming circular protrusions by half-piercing and embossing was initially attempted to determine the working conditions which gave good results with respect to shape accuracy. Corner-radius and flatness of circular protrusions made under several experimental conditions were measured and compared. It is shown that the precision of protrusions by half-piercing is superior to that of embossing, and the clearance between punch and die exerts a strong influence on the shape accuracy rather than the penetration percentage into the thickness of the sheet metal. The marking dies for "SNUT" letters, as an example, by applying the above results were manufactured with four different clearances. The working variables for the experiment were clearance and marking depth. For the very shallow depth of 0.1mm the letters were not clearly read. Letters marked under other conditions were easily distinguished with increasing marking depth. It was confirmed that the half-piercing technique with proper values of the working variables gives good quality for the marking of sheet metal.

Manufacturing System of Centrifugal Cast Metal Bearing by Dehydrogenation (탈수소 열처리 공정에 의한 원심주조 메탈베어링의 제조 시스템)

  • Kim, Jeung-Hun;Kim, Chung-Gu;Byen, Jea-Young;Lee, Eun-Suk;Yang, Ji-Yung;Choi, Won-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.5
    • /
    • pp.111-117
    • /
    • 2020
  • Centrifugal casting is suitable for producing hollow-products using centrifugal force. Bush type metal bearings are the key parts that facilitate the rotational movement of various machinery. Metal bearings produced by conventional centrifugal casting machines show rotational imbalance. Therefore, after injecting a large amount of material, the product's precision is secured in the secondary processing. Rotational imbalance is caused by the force acting on the rotary disc plate. In order to minimize rotational imbalance, NASTRAN was used for the optimal design and structural analysis. It was concluded that the rotating plate of the conventional centrifugal casting machine should be prevented from tilting. For this purpose, the location & thickness of the stiffeners were obtained through the optimum design. In the conventional centrifugal casting machine, both ends of the product are lower in temperature than the center part, so internal stress occurs. This solves this problem by inserting a heating coil into the rotating plate.

Friction Characteristics on the Sheet Metal Blanking of Leadframe (리드 프레임 블랭킹 공정의 마찰특성에 관한 연구)

  • Ko, D.C.;Kim, D.H.;Kim, M.K.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.15 no.6 s.87
    • /
    • pp.428-435
    • /
    • 2006
  • IC leadframe needs precision shape for good efficiency. Friction conditions also have a significant impact on blanking deformation. Therefore, studying the friction produced by the tribology between die and materials becomes necessary. In this study, in order to measure mechanical properties and frictions for leadframe materials such as Ni alloys and coppers, tensile test and straight pulling friction test are executed. In particular, the effect of clearance on the blanking characteristics depending on friction coefficient is examined by finite element simulation. From the finite element simulation, the metal flow, side pressure of punch and crack initiation are evaluated according to the leadframe materials.

A study on improvement of manufacturing process of aluminum chassis drive gear (알루미늄 섀시 드라이브 기어 제조공정 개선에 관한 연구)

  • Lee, Chun-Kyu;Choi, Kye-Kwang
    • Design & Manufacturing
    • /
    • v.12 no.1
    • /
    • pp.26-30
    • /
    • 2018
  • The aluminum chassis drive gear manufacturing process improvement has been very effective in both technical and economic aspects. Technology for Shear mold design technology, mold material selection and processing technology, and press molding technology has improved greatly overall. In the meantime, it is necessary to clarify the causes of defects that occur frequently due to lack of technology, Based on this, it is meaningful that it has secured the ability to respond to new product development and molding in the future. By applying these technologies, we plan to expand not only the drive gear chassis, but also various types of press forming such as frame, handle, various fastening parts of system window. In addition, the ability to develop precision products in the future is expected to become a driving force in further enhancing the competitiveness of companies.