• Title/Summary/Keyword: Precision Machine

Search Result 2,979, Processing Time 0.031 seconds

A Reverse Kinematic Approach for Error Analysis of a Machine Tool Using Helical Ball Bar Test (헬리컬 볼바 측정을 사용한 공작기계 오차해석의 역기구학적 접근)

  • 김기훈;양승한
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.703-707
    • /
    • 2000
  • Machine tool errors have to be characterized and predicted to improve machine tool accuracy. A real-time error compensation system has been developed based on volumetric error synthesis model which is composed of machine tool errors. This paper deals with new algorithm about verification of machine tool errors. This new algorithm uses a simplified volumetric error synthesis model. This simplified model is constructed with only main components among the error components of the machines. This main error components are analyzed by three-dimensional helical ball bar test. By substituting result of helical ball bar test fer simplified model, we could find that obtained error components are closed to real error components.

  • PDF

An Analytical Study on the Structure Stabilities of Multi-Tasking Machine (복합가공기의 구조 안정성에 관한 해석적 연구)

  • Shin S.W.;Lee C.M.;Chung W.J.;Kim J.S.;Lee W.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.455-456
    • /
    • 2006
  • Multi-tasking machines are widely used in machine tool industries nowadays. This study focuses on the effect of load on the structure stabilities of laser multi-tasking machine which is comprehensively combined turning center and laser machine. For design of the machine, simulation of structural analysis is carried out varying number of elements. The analysis is carried out by FEM simulation using the commercial software, CATIA V5. This method showed a proper number of elements can be selected to obtain good result by reduced computation time.

  • PDF

Development of an Expert System for Diagnosing Machine Tool Failures (공작기계 고장 진단 전문가 시스템 개발)

  • Seo, Dong-Kyu;Kang, Mu-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.10
    • /
    • pp.217-224
    • /
    • 1999
  • Trouble shooting of modern machine tools equipped with sophisticated electronic as well as mechanical parts is so difficult that it is usually depends upon the experience and accumulated knowledge of the diagnosing persons. On the other hand, tool users are scattered in wide area, which makes it expensive for a machine tool maker to run a vast service network. An unmanned diagnosis system to which users can have access at all times could be an efficient alternative. For this purpose, a rule-based expert system for diagnosing machine tools is developed. This paper describes the structure of diagnostic knowledge, the rule firing mechanism, the diagnosis flow, and user query process. An example shows the feasibility of problem solving on site without help of a service expert from machine tool maker.

  • PDF

Improvement of Estimation Accuracy of Thermal Deformation on Machine Tool by Inverse method (역해법에 의한 공작기계의 열변형 예측정도의 향상)

  • Lee, Jong-Du
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.2
    • /
    • pp.126-131
    • /
    • 2001
  • One of the major obstacles in testing or evaluating precisely the thermal behavior of a machine tool is the difficulty in measuring the heat transfer coefficients on the surfaces by a conventional method. This paper presents a new approach based on the inverse method to identify the values of heat transfer coefficients by using temperature changes measured on the surfaces of a machine tool during a short period in its operating. In the present method, a machine tool structure is modeled by the finite element method and the characteristic curves of the temperature change at several points on machine tool surfaces are theoretically derived in the form that they contain the heat transfer coefficient as an unfixed heat source are approximated so that the theoretical characteristic curves of temperature change fit the measured ones as closely as possible.

  • PDF

Geometric Accuracy Measurement of Machined Surface Using the OMM (On the Machine Measurement) System

  • Kim, Sun-Ho;Lee, Seung-Woo;Kim, Dong-Hoon;Lee, An-Sung;Lim, Sun-Jong;Park, Kyoung-Taik
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.4
    • /
    • pp.57-63
    • /
    • 2003
  • Machining information such as form accuracy and surface roughness is an important factor for manufacturing precise parts. To this regard, OMM (On the Machine Measurement) has been researched for last several decades to alternate CMM (Coordinate Measurement Machine) process. In this research, the OMM system with a laser displacement sensor was developed for measuring form accuracy and surface roughness of the machined workpiece on the machine tool. The surface roughness was estimated comparing the sensory signal with the reference data measured from master specimen. Also, form accuracy was determined from the moving averaged raw data. In addition, the geometric error map constructed beforehand using the geometric errors of the machine tool was used to compensate the obtained form accuracy. The overall performance was compared with CMM result, and verified the feasibility of the measurement system.

An Automated Machine-Vision-based Feeding System for Engine Mount Parts (머신비젼 기반의 엔진마운트 부품 자동공급시스템)

  • Lee, Hyeong-Geun;Lee, Moon-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.5
    • /
    • pp.177-185
    • /
    • 2001
  • This paper describes a machine-vision-based prototype system for automatically feeding engine-mount parts to a swaging machine which assembles engine mounts. The system developed consists of a robot, a feeding device with two cylinders and two photo sensors, and a machine vision system. The machine vision system recognizes the type of different parts being fed from the feeding device and estimates the angular difference between the inner-hole center of the part and the point predetermined for assembling. The robot then picks up each part and rotated it through the estimated angle such that the parts are well assembled together as specified. An algorithm has been developed to recognize different part types and estimate the angular difference. The test results obtained for a set of real specimens indicate that the algorithm performs well enough to be applied to prototype system.

  • PDF

Die Cast Prototyping using Plaster Casting with Pressurized Vibration Casting Machine

  • Kim, Ki-Don;Yang, Dong-Yol;Park, Tae-Kwon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.1
    • /
    • pp.56-61
    • /
    • 2001
  • This work is concerned with the development of a new plaster die casting process the combines pressurization and vibration for the prototyping of die-castings, and also with a plaster die-casting machine that has a structure quite similar to that of an ordinary die casting machine. The machine utilized an air cylinder for pressurization and a magnetic actuator for vibration. A rapid prototyped pattern is made by the LOM process to prepare a plaster mold. In the process, a plunger int he developed machine simultaneously pressurizes and vibrates the molten metal to fill the plaster mold completely and to facilitate the creation of nuclei in the molten metal, respectively. The developed machine produced a prototype of an end clutch cover with a remarkable improvement in mechanical properties.

  • PDF

INTERNATIONAL STANDARDISATION-MOVES TO COMPLETE THE MACHINE CALIBRATION PACKAGE

  • Blackshaw, Martin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.4
    • /
    • pp.13-21
    • /
    • 1992
  • Standards concerning the determination of positioning accuracy and repeatability of numerically controlled(NC) machine tools have been published relentlessly over the last 20 years. Since the publication in 1988 of the International Standard 230-2 there has been a pronounced move, both at national and international standards level, to embrace further test procedures for a complete machine tool performance assessment. For example, measurements of angular (pitch, roll, and yaw) and straightness errors along linear axes are now commonplace and complement the existing positioning accuracy and repeatablity tests. More recently the subject of circularity evalutaion has also gained considerable interest. Here dynamic tests, using a kinematic ballbar or circular masterpiece, give an instant overview of the contouring ability of the machine in two axes at specific feedrates. This information is extremely important in optimising machining accuracy. This paper describes moves to complete the machine calibration package in national and international standardis- ation for the assessment of machine tool performance.

  • PDF

A study on the measurement of rotary table error with 5-axis CNC machine (5축CNC공작기계의 회전테이블 오차 측정에 관한 연구)

  • SUH, S.H.;JUNG, S.Y.;LEE, E.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.11
    • /
    • pp.84-92
    • /
    • 1997
  • The purpose of this study is to develop a geometric error model and path compensation algorithm for rotating axes of the 5-axis machine tools, by a method to calibrate a rotary table using one master ball and three LVDTs. It was developed a new methodology to measure 3 translation errors of the rotary table and with a compensation procedure for setup errors of the master ball. The method is experimentally verified using a ball-table and on-machine inspection method. The results showed that the geometric error models with the path compensation strategy can be practically used as a means for improving the accuracy of the machine tools with rotary table.

  • PDF

An Optical Surfacing Technique of the Best-fitted Spherical Surface of the Large Optics Mirror with Ultra Precision Polishing Machine (대형 광학계 연마 장비에 의한 대구경 반사경의 최적 근사 구면 제조 방법에 관한 연구)

  • Song, Chang Kyu;Khim, Gyungho;Hwang, Jooho;Kim, Byung Sub;Park, Chun Hong;Lee, Hocheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.3
    • /
    • pp.324-330
    • /
    • 2013
  • This paper describes a novel method to surface large optics mirror with an extremely high hardness, which could replace the high cost of the repetitive off-line measurement steps and the large ultra-precision grinding machine with ultra-positioning control of 10 nm resolution. A lot of diamond pellet to be attached on the convex aluminum base consists of a grinding tool for the concave large mirror, and the tool was pressured down on the large mirror blank. The tool motion at an interval on the spiral path was controlled with each feed rate as the dwell time in the conventional computer-controlled polishing. The shape to be surfaced was measured directly by a touch probe on the machine without any separation of the mirror blank. Total 40 iterative steps of the surfacing and measurement could demonstrate the form error of RMS $7.8{\mu}m$, surface roughness of Ra $0.2{\mu}m$ for the mirror blank with diameter of 1 m and spherical radius of curvature of 5400 mm.