• 제목/요약/키워드: Precision Linear Stage

검색결과 139건 처리시간 0.023초

Numerical Simulation and Experimental Research of the Flow Coefficient of the Nozzle-Flapper Valve Considering Cavitation

  • Li, Lei;Li, Changchun;Zhang, Hengxuan
    • International Journal of Fluid Machinery and Systems
    • /
    • 제10권2호
    • /
    • pp.176-188
    • /
    • 2017
  • The nozzle-flapper valves are widely applied as a pilot stage in aerospace and military system. A subject of the analysis presented in this work is to find out a reasonable range of null clearance between the nozzle and flapper. This paper has presented a numerical flow coefficient simulation. In every design point, a parameterized model is created for flow coefficient simulation and cavitation under different conditions with varying gap width and inlet pressure. Moreover, a new test device has been designed to measure the flow coefficient and for visualized cavitation. The numerical simulation and test results both indicate that cavitation intensity gets fierce initially and shrinks finally as the gap width varies from small to large. From the curve, the flow coefficient mostly has experienced three stages: linear throttle section, transition section and saturation section. The appropriate deflection of flapper is recommended to make the gap width drop into the linear throttle section. The flapper-nozzle null clearance is optionally recommended near the range of $D_N/16$. Finally through simulation it is also concluded that the inlet pressure plays a little role in the influence on the flow coefficient.

미세입자 분사가공용 시퀸스 제어가 가능한 2축 스테이지 개발에 관한 연구 (A Study on the Development of a 2-axis Stage with Sequence Control for Micro Particle Blast Machining)

  • 황철웅;이세한;왕덕현
    • 한국기계가공학회지
    • /
    • 제19권8호
    • /
    • pp.81-87
    • /
    • 2020
  • A stable rotational-to-linear motion transformation structure using a driving mechanism with 2 degrees of freedom was developed for an orthogonal mechanism to prevent the interference of each axis in 2D motion. In this mechanism, a step motor was used for precise position control. This structure was developed to maneuver workparts in micro particle blast machining experiments. To determine the real-time performance of micro particle blast machining, the control, input, and output were operated simultaneously and precise position control was implemented, using a timer interrupt with multiple execution codes. The two step motors obtained precise position control by removing backlash with a ball-screw mechanism. The device has menu-type control codes for user-friendliness, and real-time sequence control was simultaneously adopted for user control input.

혈청(血淸) ferritin 측정(測定)의 정도관리(精度管理)에 관(關)한 고찰(考察) (A Study on the Quality Control of 2-site Immunoradiometric Assay of Serum Ferritin)

  • 김병국;서일택;김광원;조보연;고창순;이문호
    • 대한핵의학회지
    • /
    • 제14권1호
    • /
    • pp.9-16
    • /
    • 1980
  • A 2-site immunoradiometric assay for serum ferritin was evaluated with commercially available kit. The assay required 6 hours. The slope of the standard curve kept up ideal range with the calculation of maxium binding instead of total dose until expire date. The stage II washing was more important than the stage I washing on the modified washing procedure as the bead keeping to remain in the tube. With this modified mothod, three times of tube. washing was sufficient to reduce the significant errors The measured values of serially diluted sample with standard diluting buffer was proportional to the predicted values. In the experiment of serum effect on the assay. a linear relationship from 5 to 50% serum, but beyond 50% there was reduction in measured ferritin concentration. It has a sensitivity of 2.77 ng/ml, within-assay precision (CV) of 8.0%, and between-assay reproducibility(CV) of 7.4% (mean 174.8 ng/ml).

  • PDF

광학 현미경을 이용한 선표준물 측정 시스템 개발 (Development of Line Standards Measurement System Using an Optical Microscope)

  • 김종안;김재완;강주석;엄태봉
    • 한국정밀공학회지
    • /
    • 제26권8호
    • /
    • pp.72-78
    • /
    • 2009
  • We developed a line standards measurement system using an optical microscope and measured two kinds of line standards. It consists of three main parts: an optical microscope module including a CCD camera, a stage system with a linear encoder, and a measurement program for a microscopic image processing. The magnification of microscope part was calibrated using one-dimensional gratings and the angular motion of stage was measured to estimate the Abbe error. The threshold level in line width measurement was determined by comparing with certified values of a line width reference specimen, and its validity was proved through the measurement of another line width specimen. The expanded uncertainty (k=2) was about 100 nm in the measurements of $1{\mu}m{\sim}10{\mu}m$ line width. In the comparison results of line spacing measurement, two kinds of values were coincide within the expanded uncertainty, which were obtained by the one-dimensional measuring machine in KRISS and the line standards measurement system. The expanded uncertainty (k=2) in the line spacing measurement was estimated as $\sqrt{(0.098{\mu}m)^2+(1.8{\times}10^{-4}{\times}L)^2}$. Therefore, it will be applied effectively to the calibration of line standards, such as line width and line spacing, with the expanded uncertainty of several hundreds nanometer.

Reversible Data Hiding Using a Piecewise Autoregressive Predictor Based on Two-stage Embedding

  • Lee, Byeong Yong;Hwang, Hee Joon;Kim, Hyoung Joong
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권4호
    • /
    • pp.974-986
    • /
    • 2016
  • Reversible image watermarking, a type of digital data hiding, is capable of recovering the original image and extracting the hidden message with precision. A number of reversible algorithms have been proposed to achieve a high embedding capacity and a low distortion. While numerous algorithms for the achievement of a favorable performance regarding a small embedding capacity exist, the main goal of this paper is the achievement of a more favorable performance regarding a larger embedding capacity and a lower distortion. This paper therefore proposes a reversible data hiding algorithm for which a novel piecewise 2D auto-regression (P2AR) predictor that is based on a rhombus-embedding scheme is used. In addition, a minimum description length (MDL) approach is applied to remove the outlier pixels from a training set so that the effect of a multiple linear regression can be maximized. The experiment results demonstrate that the performance of the proposed method is superior to those of previous methods.

An Improved, Reliable and Practical Kinetic Assay for the Detection of Prekallikrein Activator in Blood Products

  • Shin, In-Soo;Shim, Yun-Bo;Hong, Choong-Man;Koh, Hyun-Chul;Lee, Seok-Ho;Hong, Seung-Hwa
    • Archives of Pharmacal Research
    • /
    • 제25권4호
    • /
    • pp.505-510
    • /
    • 2002
  • An improved kinetic assay for prekallikrein activator (PKA), a potential vasodilator, has been developed to be used as an indicator for quality control during production of human albumin preparations. It consists of two reaction stages. In the first stage, PKA and prekallikrein are incubated at $37^{\circ}C$ for 45 min to allow the transformation into kallikrein. Kallikrein, a serine protease, catalyzes the splitting of p-nitroaniline (pNA) from its substrate H-D-Pro-Phe-Arg-pNA(S-2302). The rate at which pNA is released was measured spectrophotometrically at 405 nm. Prekallikrein, a substrate of PKA was purified by DEAE ion-exchange chromatography and the major potential variations in the assay were optimized; pH 8.0 and 150 mM sodium chloride were chosen to give a proper ionic strength. Reaction times in the range of 10 to 360 min provided linear dose-response curves. The concentration of prekallikrein was adjusted to fall between 1:1 and 1:3 dilutions to generate a linear standard calibration curve. Under the optimized conditions, reproducibility was checked. In a precision test, the coefficient of variation (CV) stayed within ${\pm}4%$ and the dose-response curve showed a good correlation (${r^2}=0.999$). An accuracy test with an international standard of PKA afforded a mean recovery of 97.5%.

이산화 전처리 방식 및 컨볼루션 신경망을 활용한 네트워크 침입 탐지에 대한 연구 (A Research on Network Intrusion Detection based on Discrete Preprocessing Method and Convolution Neural Network)

  • 유지훈;민병준;김상수;신동일;신동규
    • 인터넷정보학회논문지
    • /
    • 제22권2호
    • /
    • pp.29-39
    • /
    • 2021
  • 새롭게 발생되는 사이버 공격으로 인해 개인, 민간 및 기업의 피해가 증가함에 따라, 이에 기반이 되는 네트워크 보안 문제는 컴퓨터 시스템의 주요 문제로 부각되었다. 이에 기존에 사용되는 네트워크 침입 탐지 시스템(Network Intrusion Detection System: NIDS)에서 발생되는 한계점을 개선하고자 기계 학습과 딥러닝을 활용한 연구 이뤄지고 있다. 이에 본 연구에서는 CNN(Convolution Neural Network) 알고리즘을 이용한 NIDS 모델 연구를 진행한다. 이미지 분류 기반의 CNN 알고리즘 학습을 위해 기존 사용되는 전처리 단계에서 연속성 변수 이산화(Discretization of Continuous) 알고리즘을 추가하여 예측 변수에 대해 선형 관계로 표현하여 해석에 용이한 데이터로 변환 후, 정사각형 행렬(Square Matrix) 구조에 매칭된 픽셀(Pixel) 이미지 구조를 모델에 학습한다. 모델의 성능 평가를 위해 네트워크 패킷 데이터인 NSL-KDD를 사용하였으며, 정확도(Accuracy), 정밀도(Precision), 재현율(Recall) 및 조화평균(F1-score)을 성능지표로 사용하였다. 실험 결과 제안된 모델에서 85%의 정확도로 가장 높은 성능을 보였으며, 학습 표본이 적은 R2L 클래스의 조화평균이 71% 성능으로 다른 모델에 비해서 매우 좋은 성능을 보였다.

Analysis of Within-Field Spatial Variation of Rice Growth and Yield in Relation to Soil Properties

  • Ahn Nguyen Tuan;Shin Jin Chul;Lee Byun-Woo
    • 한국작물학회지
    • /
    • 제50권4호
    • /
    • pp.221-237
    • /
    • 2005
  • For developing the site-specific fertilizer management strategies of crop, it is essential to know the spatial variability of soil factors and to assess their influence on the variability of crop growth and yield. In 2002 and 2003 cropping seasons within-field spatial variability of rice growth and yield was examined in relation to spatial variation of soil properties in the· two paddy fields having each area of ca. $6,600m^2$ in Suwon, Korea. The fields were managed without fertilizer or with uniform application of N, P, and K fertilizer under direct-seeded and transplanted rice. Stable soil properties such as content of clay (Clay), total nitrogen (TN), organic mater (OM), silica (Si), cation exchange capacity (CEC), and rice growth and yield were measured in each grid of $10\times10m$. The two fields showed quite similar spatial variation in soil properties, showing the smallest coefficient of variation (CV) in Clay $(7.6\%)$ and the largest in Si $(21.4\%)$. The CV of plant growth parameters measured at panicle initiation (PIS) and heading stage (HD) ranged from 6 to $38\%$, and that of rice yield ranged from 11 to $21\%$. CEC, OM, TN, and available Si showed significant correlations with rice growth and yield. Multiple linear regression model with stepwise procedure selected independent variables of N fertilizer level, climate condition and soil properties, explaining as much as $76\%$ of yield variability, of which $21.6\%$ is ascribed to soil properties. Among the soil properties, the most important soil factors causing yield spatial variability was OM, followed by Si, TN, and CEC. Boundary line response of rice yield to soil properties was represented well by Mitcherich equation (negative exponential equation) that was used to quantify the influence of soil properties on rice yield, and then the Law of the Minimum was used to identify the soil limiting factor for each grid. This boundary line approach using five stable soil properties as limiting factor explained an average of about $50\%$ of the spatial yield variability. Although the determination coefficient was not very high, an advantage of the method was that it identified clearly which soil parameter was yield limiting factor and where it was distributed in the field.

시각적 기법에 의한 DMC/UlatraCamXp/ADS80 디지털 항공영상의 공간해상도 특성 분석 (Analysis of Spatial Resolution Characteristics for DMC/UlatraCamXp/ADS80 Digital Aerial Image Based on Visual Method)

  • 이태윤;이재원
    • 대한공간정보학회지
    • /
    • 제24권1호
    • /
    • pp.61-68
    • /
    • 2016
  • 최근 디지털 항공영상은 우수한 촬영기하와 높은 공간 및 방사해상도로 인하여 대축척 지도제작에 보편적으로 활용되고 있다. 하지만 제작된 결과물에 대한 높은 정밀도와 신뢰도의 확보를 위해서는 촬영된 영상의 품질검증 작업이 선행되어야 한다. 국외에서는 영구적인 항공카메라 검정용 테스트베드를 구축하여 영상취득 시스템을 검증하는 실험적 연구가 활발히 진행되고 있다. 반면 국내에서는 아직 관련 분야에 관한 연구와 실험이 미흡하여 영상의 품질검증을 위한 실용적인 방안의 제시가 절실한 실정이다. 따라서 본 연구에서는 휴대용 Siemens star 타겟을 이용하여 시각적인 방법으로 손쉽게 영상의 공간해상도를 측정하는 방법을 제시하고자 하였다. 본 연구에 이용된 영상은 면형 방식의 DMC, UltraCamXp와 선형방식의 ADS80 등 세 종류의 카메라로 취득하였다. 촬영된 영상에서 Siemens star 타겟을 추출하여 시각적인 방법으로 영상의 해상도를 이론적인 GSD(Ground Sample Distance)와 비교하였다. 아울러 Siemens star 타겟이 촬영된 영상의 위치와 비행방향 및 비행직각 방향에 따라 공간해상도의 변화를 비교 분석하였다. 본 연구의 결과, 카메라별 촬영된 영상의 이론적 GSD는 약 6~9cm인 반면, 시각적 해상도는 이론적인 GSD에 비하여 약 1.2~1.3배 정도 크게 측정됨을 알 수 있었다.