• Title/Summary/Keyword: Precision Equipments

Search Result 176, Processing Time 0.031 seconds

An Investigation on Influence of Vibration Noise in Cooling Tower on Precision Equipments (산업용 냉각탑의 진동소음이 정밀장비에 미치는 영향에 대한 연구)

  • Lee, Jin-Kab
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.369-374
    • /
    • 2016
  • Cooling towers have been installed on rooftops or outside of buildings and widely applied to control the indoor temperature in residential areas and buildings. However, the noise and vibration resulting from their operation may cause problems in adjacent buildings. The purpose of this study is to measure the noise and vibration of an industrial cooling tower located adjacent to industrial plants and to investigate its influence on the surroundings according to an authorized evaluation standard. Further, in order to measure the effect of the vibration of the tower on the precision equipment inside the plant, an experiment is conducted to measure the vibration of the ground in the plant and the targeted precision equipment. The measurement results indicate that the noise in the cooling tower is 4 to 9 dB(A) higher than the maximum level defined in the standard of 68dB(A). The effect of the vibration of the tower on the precision equipment is comparatively minimal, because that in the supporting frame of the building is weaker than that on the floor where the precision equipment is located. The vibration of the floor on.

New Inchworm type Actuator with I/Q heterodyne Interferometer Feedback for a Long Stroke Precision Stage

  • Moon Chanwoo;Lee Sungho;Chung J.K
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.34-39
    • /
    • 2005
  • The precision stage is an essential device for optic fiber assembly systems, micro machines and semiconductor equipments. A new piezoelectric inchworm type actuator is proposed to implement an actuator-integrated long-stroke linear stage. An in-and-quadrature phase (I/Q) heterodyne interferometer is developed as a feedback sensor of a servo system, and a synchronized counting method is proposed. The proposed measurement system can measure the accurate position of fast moving object with robustness to external sensing noise from actuator vibration. The developed servo stage will be applied to optic fiber device assembly system.

Ultra Precision Positining System for Servo Motor-piezo Actuator Using the Dual Servo Loop and Digital Filter Implementation (이중서보제어루프와 디지털 필터를 통한 서보모터-업전구동기의 초정밀위치결정 시스템 개발)

  • Lee, Dong-Sung;Park, Jong-Ho;Park, Heui-Jae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.3 s.96
    • /
    • pp.154-163
    • /
    • 1999
  • In this paper, an ultra precision positioning system has been developed using dual servo loop control. For positioning system having long distance with ultra precision , the combination of global stage and micro stage was required. A servo motor based ball screw is used as a global stage and the piezo actuator as a micro stage. For the improvement of positional precision, the digital Chebyshev filter is implemented in the developed to dual servo system. Therefore, the positional repeatability has been achieved within ${\pm}$ 10 mm, and this technique can be applied to develop precision semiconductor equipments such as lithography steppers and probers.

  • PDF

Development of the Braking Equipments for a Rubber-Tired AGT Light Rail Vehicle (고무차륜 AGT 경량전철용 제동장치의 개발)

  • 박성혁;김연수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1585-1588
    • /
    • 2003
  • Based on the design requirements for the rubber-tired AGT light rail vehicle. the braking system was designed. Its major components are a brake operating unit, a pneumatic-hydraulic transfer, screw compressor, oil separator. air dryer, hydraulic caliper. After the components of braking system were manufactured. some factory tests were executed to evaluate their performances. The Results of these tests can guarantee a performance. safety of the braking system developed.

  • PDF

대칭형 유압 실린더를 이용한 부하재현에 관한 연구

  • 김학성;이교일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1991.04a
    • /
    • pp.214-224
    • /
    • 1991
  • The porpose in this study is to simulate te force required in the measurement of the performance of the equipments or testipieces. For the simulation of the required force, the difference in eachchamber pressure in the hydraulic cylinder was controlled with Variable Structure Control (VSC) theory. Also, nonlinear Variable Structure Observer (VSO) was designed to estimate the derivative of the load pressure which is necessary to determine the sliding surface in VSC theory. In this paper, the digital computer simulation and experiments were executed.

Influence of the environments on the movement precision of the guide table using externally pressurized porous air bearing (다공질 정압공기 베어링을 이용한 직진 테이블에 있어 주위환경이 움직임 정밀.정확도에 미치는 영향)

  • 한응교;허석환;노병옥
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.4
    • /
    • pp.721-729
    • /
    • 1988
  • Recently, the precision required by precision manufacturing and machinery related to electronics is within the domain of submicron that it is difficult to evaluate them by traditional measuring equipments and methods. Accordingly, precision of sub 0.1.mu.m super precise position-decision-apparatus and straight-guide air bearing have been researched and they are almost ready to be used. In utilizing straight-guide-table for super-precision-measurement which used externally pressurized porous air bearing as a way of externally pressurized air bearing, the high-precision-straight movement is the most crucial. In this study, the researcher conducted the experimental study with trial manufacture to see how the surrounding temperature and support condition influenced the selection and allocation of the machine composing element which is important to the high-precision-straight movement. The researcher finding showed that when the property of the rail part and support part of the semi-closed slider form is different, the heat generation of the working motor and surrounding temperature influence the high-precision-straight movement significantly and the researcher showed the influence of the condition of central load and eccentric load to the straight movement precision when the support stand of the straight-table was supported by numerical values.

Hybrid Fuzzy Controller for High Speed and High Precision Control of Auto-Equipments (자동화 장비의 고속 정밀제어를 위한 혼합형 퍼지 제어기)

  • 조정환
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.5
    • /
    • pp.90-96
    • /
    • 2001
  • This paper proposes the hybrid fuzzy control system for fast response time and precision control of auto-equipment which exist disturbance, parameter alteration of system, uncertainty. The purposed system, which provides the improvement in terms of the control region in high speed and precision control, first used the fuzzy control method for fast response time and when the error reaches the preset value, used the frequency-locked method for precision control. The theoretical and experimental studies have been carried out. The presented results from the above investigation show considerably improved performance in the position control of auto-equipment.

  • PDF