• Title/Summary/Keyword: Precision Arm

Search Result 210, Processing Time 0.022 seconds

Implementation and Performance Evaluation of the Dual Controller System for Precision Control of Gripper (그리퍼 정밀 제어를 위한 이중 제어기 시스템의 구현 및 성능 평가)

  • Lee, Seung-Yong;Ham, Un-Hyong;Park, Young-Woo;Jung, Il-Kyun;Lim, Sun
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.1
    • /
    • pp.72-78
    • /
    • 2018
  • This paper proposes a Dual Controller System for Precision Control (DCSPC) for control of the gripper. The DCSPC consists of two subsystems, CDSP (Controller based DSP) and CARM (Controller based ARM processor). The CDSP is developed on a DSP processor and controls the gripping motor and LVDT. In particular, the CARM is implemented using Linux and ARM processor according to recent research related to open-source. The robot for high-precision assembly is divided into the robot control and the gripper control section and controls CARM and CDSP systems respectively. In this paper, we also proposed and measured the performance of communication API. As a result, it is expected to recognize improvements in communication between CARM and the robot controller, and will continue to conduct relevant research among other commercial robot controllers.

Dual-arm Robot for Cell Production of Cellular Phone (휴대폰 셀 생산 공정 적용을 위한 양팔 로봇 개발)

  • Do, Hyun Min;Choi, Taeyong;Park, Chanhun;Park, Dong Il;Kyung, Jin Ho;Kim, Kye Kyung;Kang, Sang Seung;Kim, Joong Bae;Lee, Jae Yeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.9
    • /
    • pp.893-899
    • /
    • 2013
  • Recently, the requirement of automation in the cell production system is increasing due to a decrease of skilled workers who are the key point of a cell production system. This paper proposes a dual-arm robot designed and implemented with consideration of being applied to a cell production line of cellular phone. A specification was derived from the analysis of production process and the consideration of configuration for human-robot cooperation. Design and implementation results of the proposed dual-arm robot were suggested and the feasibility was verified through the demonstration of the proposed robot in some of packaging job of cellular phone.

Multi-level Shape Optimization of Lower Arm by using TOPSIS and Computational Orthogonal Array (TOPSIS와 전산직교배열을 적용한 자동차 로워암의 다수준 형상최적설계)

  • Lee, Kwang-Ki;Han, Seung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.4
    • /
    • pp.482-489
    • /
    • 2011
  • In practical design process, designer needs to find an optimal solution by using full factorial discrete combination, rather than by using optimization algorithm considering continuous design variables. So, ANOVA(Analysis of Variance) based on an orthogonal array, i.e. Taguchi method, has been widely used in most parts of industry area. However, the Taguchi method is limited for the shape optimization by using CAE, because the multi-level and multi-objective optimization can't be carried out simultaneously. In this study, a combined method was proposed taking into account of multi-level computational orthogonal array and TOPSIS(Technique for Order preference by Similarity to Ideal Solution), which is known as a classical method of multiple attribute decision making and enables to solve various decision making or selection problems in an aspect of multi-objective optimization. The proposed method was applied to a case study of the multi-level shape optimization of lower arm used to automobile parts, and the design space was explored via an efficient application of the related CAE tools. The multi-level shape optimization was performed sequentially by applying both of the neural network model generated from seven-level four-factor computational orthogonal array and the TOPSIS. The weight and maximum stress of the lower arm, as the objective functions for the multi-level shape optimization, showed an improvement of 0.07% and 17.89%, respectively. In addition, the number of CAE carried out for the shape optimization was only 55 times in comparison to full factorial method necessary to 2,401 times.

Implementation and Analysis of Multi-Precision Multiplication for Public Key Cryptography Based on Android Platform (안드로이드 기반 공개키 암호를 위한 곱셈기 구현 및 분석)

  • Seo, Hwa-Jeong;Kim, Ho-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.10
    • /
    • pp.940-948
    • /
    • 2012
  • Android program is developed with JAVA SDK and executed over virtual machine. For this reason, programming is easier than traditional C language but performance of operating speed decreases. To enhance the performance, NDK development tool, which provides C language, assembly language environment, was proposed. Furthermore, with NEON function provided by ARM, we can utilize the vector operation and enhance performance. In the paper, we explore effectiveness of NDK and then propose advanced multiplication structure with NEON function.

Decentralized Adaptive fuzzy sliding mode control of Robot Manipulator

  • Kim, Young-Tae;Lee, Dong-Wook
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.3
    • /
    • pp.34-40
    • /
    • 2001
  • Robot manipulator has highly nonlinear dynamics. Therefore the control of multi-link robot arms is a challenging and difficult problem. In this paper a decentralized adaptive fuzzy sliding mode scheme is developed for control of robot manipulators. The proposed scheme does not require an accurate manipulator dynamic model, yet it guarantees asymptotic trajectory tracking despite gross robot parameter variations. Numerical simulation for decentralized control of a 3-axis PUMA arm will also be included.

  • PDF

Design of an Automatic Target Sensing and Triggering System (적외선 감지 자동격발장치의 설계)

  • Hong S.H.;Kim K.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1719-1723
    • /
    • 2005
  • An automatic target sensing and triggering system for small fire arms is proposed. The system consists of an optical collector, an infrared ray sensor responsive to human body temperature, an electric actuator and a trigger mechanism. TRIZ methodologies are used to develop solutions to several contradictory problems. Experimental results on the system performance is compared with predictions.

  • PDF

A Fuzzy Robust Controller with Saturation for Robot Manipulators (로봇 매니퓰레이터의 포화요소를 갖는 퍼지견실 제어)

  • Park, H.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.4
    • /
    • pp.104-109
    • /
    • 1997
  • A robust controller design to corrdinate a robot manipulator under unknown system parameters and bounded disturbance inputs is presented in this paper. Generally, robust controllers require high input torque so that they may face input saturation in actual application due to the power limitation of the actuator. To solve this problem, an improved robust controller with saturated input torque using a fuzzy logic control is proposed. Numerical examples are shown to validate the proposed controller using two degree-of-freedom planar arm.

  • PDF

A Study on the Obstacle Avoidance of a Multi-Link Robot System using Vision System (Vision System을 이용한 다관절 로봇팔의 장애물 우회에 관한 연구)

  • 송경수;이병룡
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.691-694
    • /
    • 2000
  • In this paper, a motion control algorithm is proposed by using neural network system, which makes a robot arm successfully avoid unexpected obstacle when the robot is moving from the start to the goal position. During the motion, if there is an obstacle the vision system recognizes it. And in every time the optimization-algorithm quickly chooses a motion among the possible motions of robot. The proposed algorithm has a good avoidance characteristic in simulation.

  • PDF

A Study on Analysis of Dynamic Characteristics of Main Control Valve for Hydraulic Excavator using AMESim (AMESim을 이용한 유압 굴삭기용 Main Control Valve의 동특성 해석에 관한 연구)

  • 임태형;양순용;이병룡;안경관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1755-1759
    • /
    • 2003
  • The hydraulic excavator has been a popular research object for automation because of its multi-workings and economic efficiency. The objective of this paper is to design each components and to construct boom, arm, bucket circuit. These models modeled with AMESim show us change of variables and behavior of excavator. Simulation model will be used for simulator of excavator.

  • PDF