Even though there are several Global Navigation Satellite Systems under development, only GPS and GLONASS are currently available for satellite positioning. In this study, GLONASS orbits were predicted from broadcast ephemeris using the 4th-order Runge-Kutta numerical integration. For accuracy validation, predicted orbits were compared with precise ephemeris. The RMS(Root Mean Square) and maximum 3-D errors were 14.3 km and 17.4 km for one-day predictions. In case of 7-day predictions, the RMS and maximum 3-D errors were 15.7 and 40.1 km, respectively. Also, the GLONASS satellite visibility predictions were compared with real observations, and they agree perfectly except for several epochs when the satellite signal was blocked by nearby buildings.
The GNSS (Global Navigation Satellite System) signal is delayed by the neutral atmosphere at the troposphere, so that the delay is one of major error sources for GNSS precise positioning. The tropospheric delay is an integrated refractive index along the path of GNSS signal. The refractive index is empirically related to standard meteorological variables, such as pressure, temperature and water vapor partial pressure, therefore the tropospheric delay could be calculated from them. In this paper, it is presented how to generate meteorological data where observation cannot be performed. KASI(Korea Astronomy & Space Science Institute) has operated 9 GPS (Global Positioning System) permanent stations equipped with co-located MET3A, which is a meteorological sensor. Meteorological data are generated from observations of MET3A by Ordinary Kriging. To compensate a blank of observation data, simple models which consider periodic characteristics for meteorological data, are employed.
Journal of Korean Society for Geospatial Information Science
/
v.8
no.1
s.15
/
pp.97-103
/
2000
The main purpose of 1-1-9 Caller Location Information System is to identify and display the precise location of emergency incidents such as natural or man - made fires, medical emergencies and accidents. The state - of- the - art technologies such as Am (Automatic Number Identification), GIS(Geographical Information System) and GPS (Global Positioning System) were applied and integrated in the system for efficient and effective location identification. It displays a radius of 25M, 50M and 100M on the map after location identification. The system can also provide the shortest path to an incident location from a fire station or a fire engine. In case of a fire breakout in or near a building, the attribute information of the building, called a building attribute card, is displayed along with the map location. The system then matches the information with the fire situation and sends an alert to a responsible fire station by phone or fax in order to help promptly react to the problem. An attribute card includes the critical information of a premise such as building's location, number of stories, floor plans, capacity, construction history, indoor fire detection and Prevention facilities, etc.
Ji, Shengyue;Chen, Wu;Zhao, Chunmei;Ding, Xiaoli;Chen, Yongqi
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
v.1
/
pp.179-184
/
2006
Rapid and high-precision positioning with a Global Navigation Satellite System (GNSS) is feasible only when very precise carrier-phase observations can be used. There are two kinds of mathematical models for ambiguity resolution. The first one is based on both pseudorange and carrier phase measurements, and the observation equations are of full rank. The second one is only based on carrier phase measurement, which is a rank-defect model. Though the former is more commonly used, the latter has its own advantage, that is, ambiguity resolution will be freed from the effects of pseudorange multipath. Galileo will be operational. One of the important differences between Galileo and current GPS is that Galileo will provide signals in four frequency bands. With more carrier-phase data available, frequency combinations with long equivalent wavelength can be formed, so Galileo will provide more opportunities for fast and reliable ambiguity resolution than current GPS. This paper tries to investigate phase only fast ambiguity resolution performance with four Galileo frequencies for short baseline. Cascading Ambiguity Resolution (CAR) method with selected optimal frequency combinations and LAMBDA method are used and compared. To validate the resolution, two tests are used and compared. The first one is a ratio test. The second one is lower bound success-rate test. The simulation test results show that, with LAMBDA method, whether with ratio test or lower bound success rate validation criteria, ambiguity can be fixed in several seconds, 8 seconds at most even when 1 sigma of carrier phase noise is 12 mm. While with CAR method, at least about half minute is required even when 1 sigma of carrier phase noise is 3 mm. It shows that LAMBDA method performs obviously better than CAR method.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.29
no.2
/
pp.201-208
/
2011
With the increase in the number of smartphone users, precise 3D positional information is required by various applications. The positioning accuracy using civilian single-frequency pseudoranges is at the level of 10 m or so, but most applications these days are asking for a sub-meter level Therefore, instead of an absolute positioning technique, the VRS-based differential approach is applied along with the correction of the double-differenced (DD) residual errors using FKP (Flachen-Korrektur-Parameter). The VRS (Virual Reference Station) is located close to the rover, and the measurements are generated by correcting the geometrical distance to those of the master reference station. Since the unmodeled errors are generally proportional to the length of the baselines, the correction parameters are estimated by fitting a plane to the DD pseudorange errors of the CORS network. The DD positioning accuracy using 24 hours of C/A code measurements provides the RMS errors of 37 cm, 28 cm for latitudinal and longitudinal direction, respectively, and 76 cm for height. The accuracy of the horizontal components is within ${\pm}0.5m$ for about 90% of total epochs, and in particular the biases are significantly decreased to the level of 2-3 cm due to the network-based error modeling. Consequently, it is possible to consistently achieve a sub-meter level accuracy from the single-frequency pseudoranges using the VRS and double-differenced error modeling.
Most of the maritime accidents are the crash that occurred by complex coastal terrain, increased maritime traffic and frequent weather changes. Therefore, transportation safety is exactly determined using accurate environmental informations, but if informations are inaccurate or insufficient, accident risk can be increased. Therefore, ship need the system that can accurately generate transportation safety information. This paper proposes the transportation safety system and performance evaluation in the real environment. The proposed system includes database of environment informations and navigation algorithm using PPP method to estimate the accurate ship position. Therefore, this system can accurately calculate distance or freeboard between ship with other factors. Futhermore, when weather is deteriorated, crew can sail with database based 3-D monitoring module in the transportation safety system. To verify the function and performance, data of Kyungin ARA waterway and ferry is used to evaluation.
When user estimates user's position, GPS positions can be obtained from the navigation message transmitted from the GPS. However, the broadcast ephemeris cannot be used in the applications required high-level accuracies because it can cause errors of several meters. To correct satellite positions and clocks, user can use RTS corrections provided by IGS. In this paper, the accuracy of broadcast and RTS corrections are analyzed by comparing with the IGS final for 3-months. The RTS errors are analyzed for each user's locations and satellite blocks. The correlations between errors and shadow condition, and solar and geomagnetic activities are analyzed. The latency is applied to the RTS corrections, and these are extrapolated by polynomial. Then, the extrapolated RTS are compared with true RTS. The single-day performances of the PPP by broadcast ephemeris and RTS corrected ephemeris are analyzed. As a result, RTS 3D orbit and clock errors are 1/20 and 1/3 less than broadcast ephemeris errors. 3D positioning error of the RTS is 1/5 less than that of broadcast ephemeris.
Kim, Cheolwook;Lim, Pyeong-chae;Chi, Junhwa;Kim, Taejung;Rhee, Sooahm
Korean Journal of Remote Sensing
/
v.38
no.6_1
/
pp.1125-1139
/
2022
In an unmanned aerial vehicles (UAVs) system, a physical offset can be existed between the global positioning system/inertial measurement unit (GPS/IMU) sensor and the observation sensor such as a hyperspectral sensor, and a lidar sensor. As a result of the physical offset, a misalignment between each image can be occurred along with a flight direction. In particular, in a case of multi-sensor system, an observation sensor has to be replaced regularly to equip another observation sensor, and then, a high cost should be paid to acquire a calibration parameter. In this study, we establish a precise sensor model equation to apply for a multiple sensor in common and propose an independent physical offset estimation method. The proposed method consists of 3 steps. Firstly, we define an appropriate rotation matrix for our system, and an initial sensor model equation for direct-georeferencing. Next, an observation equation for the physical offset estimation is established by extracting a corresponding point between a ground control point and the observed data from a sensor. Finally, the physical offset is estimated based on the observed data, and the precise sensor model equation is established by applying the estimated parameters to the initial sensor model equation. 4 region's datasets(Jeon-ju, Incheon, Alaska, Norway) with a different latitude, longitude were compared to analyze the effects of the calibration parameter. We confirmed that a misalignment between images were adjusted after applying for the physical offset in the sensor model equation. An absolute position accuracy was analyzed in the Incheon dataset, compared to a ground control point. For the hyperspectral image, root mean square error (RMSE) for X, Y direction was calculated for 0.12 m, and for the point cloud, RMSE was calculated for 0.03 m. Furthermore, a relative position accuracy for a specific point between the adjusted point cloud and the hyperspectral images were also analyzed for 0.07 m, so we confirmed that a precise data mapping is available for an observation without a ground control point through the proposed estimation method, and we also confirmed a possibility of multi-sensor fusion. From this study, we expect that a flexible multi-sensor platform system can be operated through the independent parameter estimation method with an economic cost saving.
For real-time precise positioning, IGS provides ephemeris predictions (IGS ultra-rapid, IGU) and real-time ephemeris estimates (real-time service, RTS). Due to the RTS data latency, which ranges from 5 s to 30 s, a short-term prediction process is necessary before applying the RTS corrections. In this paper, the real-time performance of the RTS correction and IGU prediction are compared. The RTS correction availability for the GPS satellites observed in Korea is computed as 99.3%. The RTS correction is applied to broadcast ephemeris to verify the accuracy of the RTS correction. The 3D orbit RMS error of the RTS correction is 0.043 m. Prediction of the RTS correction is modeled as a polynomial, and then the predicted value is compared with the IGU prediction value. The RTS orbit prediction accuracy is nearly equivalent to the IGU prediction, but RTS clock prediction performance is 0.13 m better than the IGU prediction.
ELoran Systems can provide Position, Navigation, and Time services with comparable performance to Global Positioning Systems (GPS) as a back up or alternative system. High timing and navigation performance can be achieved by eLoran signals because eLoran receivers use "all-in-view" reception. This incorporates Time of Arrival (TOA) signals from all stations in the service range because each eLoran station is synchronized to Coordinated Universal Time (UTC). Transmission station information and the differential Loran correction data are transmitted via an additional Loran Data Channel (LDC) on the transmitted eLoran signal such that eLoran provides improved Position Navigation and Timing (PNT) over legacy Loran. In this paper, we propose a technique for adapting the delay time compensation values in eLoran timing receivers to provide precise time comparison. For this purpose, we have designed a system that measures time delay from the crossing point of the third cycle extracted from the current transformer at the end point of the transmitter. The receiver delay was measured by connecting an active H-field, an E-field and a passive loop antenna to a commercial eLoran timing receiver. The common-view time transfer technique using the calibrated eLoran timing receiver improved the eLoran transfer time. A eLoran timing receiver calibrated by this method can be utilized in the field for precise time comparison as a GNSS backup.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.