• Title/Summary/Keyword: Precipitation types

Search Result 292, Processing Time 0.032 seconds

Landslide Types and Susceptibilities Related to Geomorphic Characteristics - Yeonchon-Chulwon Area - (지형특성에 따른 산사태의 유형 및 취약성 - 연천-철원지역을 대상으로 -)

  • 김원영;이사로;김경수;채병곤
    • The Journal of Engineering Geology
    • /
    • v.8 no.2
    • /
    • pp.115-130
    • /
    • 1998
  • An analysis on landslide types and susceptibilities associated with geomorphic characteristics has been conducted with 916 landslide inventories in Yeonchon-Chulwon District, where two day's heavy rainfall was concentrated on July, 1996. The precipitation during the 2 days, which is equivalent to 0.372 of event cofficient, can cause large landslides based on Olivier's equation. Sliding materials are dominantly composed of debris mixed with rock fragments and soil derived from colluvium and residual soils. 66% of the landslides are belong to debris flow md 23% are due to sediments flow, in accordance with the classification of sliding materials. Most of landslides(> 90%) are small and shallow, less than l00m in length and about 1m in depth, and classified as transitional type. Granite is more susceptible as much as 4.7 times than metamorphic rocks and 2.7 times than volcanic rocks, probably due to higher weathering grade of granite. The highest landslide frequency is concentrated on the areas between 200 and 300m in height and on the slopes between $10-20^{\circ}$ in dgree. More than 50% of landslides occurred under these geomorphic conditions. Consequently, colluviums and residual soils distributed on the gentle slopes are most susceptible to the landslides of the area.

  • PDF

Runoff Characteristics of Non-point Source Pollutants from Different Forest Types During Rainfall Events (활엽수림, 침엽수림 및 혼효림 지역의 강우시 비점오염물질 유출특성)

  • Shin, Minhwan;Shin, Dongsuk;Lee, Jaewoon;Choi, Jaewan;Won, Chulhee;Seo, Jiyeon;Choi, Yonghun;Choi, Joongdae
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.3
    • /
    • pp.507-517
    • /
    • 2010
  • Long-term monitoring was conducted to identify the runoff characteristics of non-point source according to the three forest types (deciduous forest, coniferous forest and mixed forest) in this study. Rainfall events of each deciduous forest, coniferous forest, and mixed forest were 10, 8, 12, respectively. Average runoff depth and coefficients of each forest type were founded to be coniferous forest and were followed by others in turns : deciduous forest, and mixed forest because various conditions (i.e., rainfall property, Antecedent Precipitation Index (API), soil property, slope, and forest management) could change runoff characteristics. In the analysis of the first flush phenomenon, it showed that SS and T-P were sensitive for the first flush phenomenon. The first flush phenomenon of them were showed differently by rainfall intensity, rainfall duration, and amount of rainfall. The research results indicated that range of the Event Mean Concentration (EMC) values in deciduous forest were 0.8~2.4 mg/L for $BOD_5$, 2.0~13.4 mg/L for $COD_{Mn}$, 1.3~2.9 mg/L for DOC, 1.150~3.913 mg/L for T-N, 0.010~0.350 mg/L for T-P and 3.1~291.8 mg/L for SS and in coniferous forest were 0.8~2.2 mg/L for $BOD_5$, 1.9~3.6 mg/L for $COD_{Mn}$, 1.0~2.0 mg/L for DOC, 1.025~2.957 mg/L for T-N, 0.002~0.084 mg/L for T-P and 0.8~5.4 mg/L for SS. Also, range of the EMC values in mixed forest were 1.3~2.3 mg/L for $BOD_5$, 2.4~4.8 mg/L for $COD_{Mn}$, 1.1~2.1 mg/L for DOC, 0.385~2.703 mg/L for T-N, 0.016~0.080 mg/L for T-P and 2.3~30.0 mg/L for SS.

A Classification of Climatic Region in Korea Using GIS (GIS를 이용한 한국의 기후지역 구분)

  • Park, Hyun-Wook;Moon, Byung-Chae
    • Journal of the Korean Geographical Society
    • /
    • v.33 no.1
    • /
    • pp.17-40
    • /
    • 1998
  • The purpose of this study is to classify climatic environment according to its characteristics in Korea using GIS. The necessary condition of climatic division is that it is able to indicate climatic phenomena systematically and it has scientific persuasive power. Precipitaiton, rainfall days, temperature and weather entropy which are consist of Korean climatic elements are of advantage to indicate climatic phenomena systematically. GIS(Geographic Information System)has scientific persuasive power. This paper shows the time-spatial variations of each climatic elements, using GIS to precipitation, rainfall days, Temperature and weather entropy in Korea. And writers tried to know these regional characteristics and to divide the detailed climatic environment objectively and systematically. The main result of this study is that the regional division of climatic environment in Korea can be classified into 8 types, in details, 26 or 48 types.

  • PDF

Geochemical Evolution of CO2-rich Groundwater in the Jungwon Area (중원 지역 탄산수의 지구화학적 진화)

  • 고용권
    • Economic and Environmental Geology
    • /
    • v.32 no.5
    • /
    • pp.469-483
    • /
    • 1999
  • Two different types of deep groundwaters occur together in the Jungwon area: $CO_2$-rich water and alkali water. Each water shows distrinct hydrogeochemical and environmental isotopic characteristics. The $CO_2$-rich waters are characterized by lower pH(6.0~6.4), higher Eh (25~85mV) and higher TDS content (up to 3,300 mg/l), whereas the alkali type waters have higher pH (9.1~9.5), lower Eh (-136~-128mV) and lower TDS content (168~254 mg/l). The CO2-rich waters ($Pco_2$=up to 1atm) were probably evolved by the local supply of deep $CO_2$ during the deep circulation, resulting in enhanced dissolution of surrounding rocks to yield high concentrations of $Ca^{2+}, Na^+, Mg^{2+}, K^+\; and \;HCO_3\;^-$ under low pH conditions. On the other hand, the alkali type waters ($Pco_2$=about 10-4.6 atm) were evolved through lesser degrees of simple wate/rock (granite) interaction under the limited suppy of $CO_2$. The alkali waters are relatively enriched in F- (up to 14mg/l), whereas the F- concentration of$CO_2$-rich water is lower (2.2~4.8 mg/l) due to the buffering by precipitation of fluorite. The oxygen-hydrogen isotopes and tritium data indicate that compared to shaltion ($\delta$18O=-9.5~-7.8$\textperthousand$),two different types fo deep groudwaters (<1.0TU)were both derived from pre-thermonuclear (more than 40 years old) meteoric waters with lighter O-H isotopic composition ($\delta$18O=-9.5~-7.8$\textperthousand$) and have evolved through prolonged water/rock interaction. The $CO_2$-rich waters also show some degrees of isotopic re-equilibration with $CO_2$ gas. The $\delta^{34}S$ values of dissolved sulfates (+24.2~+27.6$\textperthousand$) in the $CO_2$-rich waters suggest the reduction of sulfate by organic activity at depths. The carbon isotope data show that dissolved carbon in the $CO_2$-rich waters were possibly derived either from dissolution of calcite or from deep $CO_2$ gas. However, strontium isotope data indicate Ca in the $CO_2$-rich waters were derived mainly from plagioclase in granite, not from hydrothermal calcites.

  • PDF

Predictive Exploration of the Cretaceous Major Mineral Deposits in Korea : Focusing on W-Mo Mineralization (한국 백악기 주요 금속광상의 예측 탐사 : W-Mo 광화작용을 중심으로)

  • Choi, Seon-Gyu;Kang, Jeonggeuk;Lee, Jong Hyun
    • Economic and Environmental Geology
    • /
    • v.52 no.5
    • /
    • pp.323-336
    • /
    • 2019
  • The Mesozoic activity on the Korean Peninsula is mainly represented by the Triassic post-collisional, Jurassic orogenic, and Cretaceous post-orogenic igneous activities. The diversity of mineralization by each geological period came from various geothermal systems derived from the geochemical characteristics of magma with different emplacement depth. The Cretaceous metallic mineralization has been carried out over a wide range of time periods from ca. 115 to 45 Ma (main stage; ca. 100 to 60 Ma) related to post-orogenic igneous activity, and spatial distribution patterns of most metal deposits are concentrated along small granitic stocks. The late Cretaceous metal deposits in the Gyeonggi and Yeongnam massifs are generally distributed along the boundary among the Gongju-Eumseong fault system and the Yeongdong-Gwangju fault system and the Gyeongsang Basin, most of them are in the form of a distal epithermal~mesothermal Au-Ag vein or a transitional mesothermal Zn-Pb-Cu vein. On the other hand, diverse metal commodities in the Taebaeg Basin, the Okcheon metamorphic belt and the Gyeongsang Basin are produced from various deposit types such as skarn, carbonate-replacement, vein, porphyry, breccia pipe, and Carlin type. In the late Cretaceous metallic mineralization, various mineral deposits and commodities were induced not only by the pathway of the hydrothermal solution, but also by the diversity of precipitation environment in the proximity difference of the granitic rocks. The diversity of these types of Cretaceous deposits is fundamentally dependent on the geochemical characteristics such as degree of differentiation and oxidation state of related igneous rocks, and ore-forming fluids generally exhibit the evolutionary characteristics of intermediate- to low-sulfur hydrothermal fluids.

Habitat Distribution Change Prediction of Asiatic Black Bears (Ursus thibetanus) Using Maxent Modeling Approach (Maxent 모델을 이용한 반달가슴곰의 서식지 분포변화 예측)

  • Kim, Tae-Geun;Yang, DooHa;Cho, YoungHo;Song, Kyo-Hong;Oh, Jang-Geun
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.3
    • /
    • pp.197-207
    • /
    • 2016
  • This study aims at providing basic data to objectively evaluate the areas suitable for reintroduction of the species of Asiatic black bear (Ursus thibetanus) in order to effectively preserve the Asiatic black bears in the Korean protection areas including national parks, and for the species restoration success. To this end, this study predicted the potential habitats in East Asia, Southeast Asia and India, where there are the records of Asiatic black bears' appearances using the Maxent model and environmental variables related with climate, topography, road and land use. In addition, this study evaluated the effects of the relevant climate and environmental variables. This study also analyzed inhabitation range area suitable for Asiatic black and geographic change according to future climate change. As for the judgment accuracy of the Maxent model widely utilized for habitat distribution research of wildlife for preservation, AUC value was calculated as 0.893 (sd=0.121). This was useful in predicting Asiatic black bears' potential habitat and evaluate the habitat change characteristics according to future climate change. Compare to the distribution map of Asiatic black bears evaluated by IUCN, Habitat suitability by the Maxent model were regionally diverse in extant areas and low in the extinct areas from IUCN map. This can be the result reflecting the regional difference in the environmental conditions where Asiatic black bears inhabit. As for the environment affecting the potential habitat distribution of Asiatic black bears, inhabitation rate was the highest, according to land coverage type, compared to climate, topography and artificial factors like distance from road. Especially, the area of deciduous broadleaf forest was predicted to be preferred, in comparison with other land coverage types. Annual mean precipitation and the precipitation during the driest period were projected to affect more than temperature's annual range, and the inhabitation possibility was higher, as distance was farther from road. The reason is that Asiatic black bears are conjectured to prefer more stable area without human's intervention, as well as prey resource. The inhabitation range was predicted to be expanded gradually to the southern part of India, China's southeast coast and adjacent inland area, and Vietnam, Laos and Malaysia in the eastern coastal areas of Southeast Asia. The following areas are forecast to be the core areas, where Asiatic black bears can inhabit in the Asian region: Jeonnam, Jeonbuk and Gangwon areas in South Korea, Kyushu, Chugoku, Shikoku, Chubu, Kanto and Tohoku's border area in Japan, and Jiangxi, Zhejiang and Fujian border area in China. This study is expected to be used as basic data for the preservation and efficient management of Asiatic black bear's habitat, artificially introduced individual bear's release area selection, and the management of collision zones with humans.

제주도 지하수자원의 최적 개발가능량 선정에 관한 수리지질학적 연구

  • 한정상;김창길;김남종;한규상
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1994.07a
    • /
    • pp.184-215
    • /
    • 1994
  • The Hydrogeologic data of 455 water wells comprising geologic and aquifer test were analyzed to determine hydrogeoloic characteristics of Cheju island. The groundwater of Cheju island is occurred in unconsolidated pyroclastic deposits interbedded in highly jointed basaltic and andesic rocks as high level, basal and parabasal types order unconfined condition. The average transmissivity and specific yield of the aquifer are at about 29,300m$^2$/day and 0.12 respectively. The total storage of groundwater is estimated about 44 billion cubic meters(m$^3$). Average annual precipitation is about 3390 million m$^3$ among which average recharge amount is estimated 1494 million m$^3$ equivalent 44.1% of annual precipitation with 638 million m$^3$ of runoff and 1256 million m$^3$ of evapotranspiration. Based on groundwater budget analysis, the sustainable yield is about 620 million m$^3$(41% of annual recharge)and rest of it is discharging into the sea. The geologic logs of recently drilled thermal water wens indicate that very low-permeable marine sediments(Sehwa-ri formation) composed of loosely cemented sandy sat derived from mainly volcanic ashes, at the 1st stage volcanic activity of the area was situated at the 120$\pm$68m below sea level. And also the other low-permeable sedimentary rock called Segipo-formation which is deemed younger than former marine sediment is occured at the area covering north-west and western part of Cheju at the $\pm$70m below sea level. If these impermeable beds are distributed as a basal formation of fresh water zone of Cheju, most of groundwater in Cheju will be para-basal type. These formations will be one of the most important hydrogeologic boundary and groundwater occurences in the area.

  • PDF

Lessons from Cross-Scale Studies of Water and Carbon Cycles in the Gwangneung Forest Catchment in a Complex Landscape of Monsoon Korea (몬순기후와 복잡지형의 특성을 갖는 광릉 산림유역의 물과 탄소순환에 대한 교차규모 연구로부터의 교훈)

  • Lee, Dong-Ho;Kim, Joon;Kim, Su-Jin;Moon, Sang-Ki;Lee, Jae-Seok;Lim, Jong-Hwan;Son, Yow-Han;Kang, Sin-Kyu;Kim, Sang-Hyun;Kim, Kyong-Ha;Woo, Nam-Chil;Lee, Bu-Yong;Kim, Sung
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.2
    • /
    • pp.149-160
    • /
    • 2007
  • KoFlux Gwangneung Supersite comprises complex topography and diverse vegetation types (and structures), which necessitate complementary multi-disciplinary measurements to understand energy and matter exchange. Here, we report the results of this ongoing research with special focuses on carbon/water budgets in Gwangneung forest, implications of inter-dependency between water and carbon cycles, and the importance of hydrology in carbon cycling under monsoon climate. Comprehensive biometric and chamber measurements indicated the mean annual net ecosystem productivity (NEP) of this forest to be ${\sim}2.6\;t\;C\;ha^{-1}y^{-1}$. In conjunction with the tower flux measurement, the preliminary carbon budget suggests the Gwangneung forest to be an important sink for atmospheric $CO_2$. The catchment scale water budget indicated that $30\sim40%$ of annual precipitation was apportioned to evapotranspiration (ET). The growing season average of the water use efficiency (WUE), determined from leaf carbon isotope ratios of representative tree species, was about $12{\mu}mol\;CO_2/mmol\;H_2O$ with noticeable seasonal variations. Such information on ET and WUE can be used to constrain the catchment scale carbon uptake. Inter-annual variations in tree ring growth and soil respiration rates correlated with the magnitude and the pattern of precipitation during the growing season, which requires further investigation of the effect of a monsoon climate on the catchment carbon cycle. Additionally, we examine whether structural and functional units exist in this catchment by characterizing the spatial heterogeneity of the study site, which will provide the linkage between different spatial and temporal scale measurements.

Evaluation of Biomass and Feed Value of Forage Wheat in Central Region at the Paddy by Cultivars (중부지역 논 재배 사료용 밀의 품종별 생산성 및 사료가치 평가)

  • Cho, Hyun Min;Shin, Myeong Na;Shim, Kang Bo;Han, Areum;Jeon, Weon Tai
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.2
    • /
    • pp.79-88
    • /
    • 2022
  • This study was conducted to evaluate the productivity of whole crop silage wheat utilizing the paddy fields during a couple of years from 2019 to 2021 in Suwon, Korea. This investigation was used the two maturity types of wheat cultivar 'Cheongwoo' (early) and 'Taeu' (late). The heading date of 2nd year (Oct. 2020 to May. 2021) cultivation was delayed about 11 to 13 days by more than 1st year (Oct. 2019 to May. 2020). The growth characteristics were shown that the plant height was increased in 2nd cultivation, while the number of culms and the panicle part ratio were decreased. Moreover, the nutritive value of 'Cheongwoo' and 'Taeu' were also decreased in 2nd cultivation. These changes have thought to a difference of the precipitation by cultivation years. Because, the precipitation during the period from the end of winter dormancy to the harvesting stage in 2nd (337 mm) cultivation was more about twice than 1st (169.3 mm) cultivation. However, the dry matter yield of 'Cheongwoo' was not shown a statistical difference by cultivation years, while 'Taeu' was shown to decrease tendency. The total dry matter yield regardless of the cultivation years were higher in 'Cheongwoo' than 'Taeu', and especially 'Cheongwoo' was more 3 tons per hectare (15.3 t/ha) than 'Taeu' (12.6 t/ha) at 2nd cultivation (p<0.01). The trend of dry weight in 'Cheongwoo', early mature type, showed a relatively high ratio of dry matter (p<0.05) was considered that due to a high panicle ratio by a fast heading and an adequate weight of panicles by a sufficient maturing. In conclusion, selecting the early maturity cultivars could achieve a higher and more stable total dry matter yield considering the cropping system in the central region. Furthermore, it also has the advantage of being able to double-cropping system with forage rice, which has considered the maximum whole-crop forage production year-round. These results suggest that the 'Cheongwoo' be optimum cultivar to produce the year-round forage on paddy fields in the central region.

Leaching Characteristics of the Endocrine Disruptor-suspected Pesticides in Upland Soil (내분비계장애추정농약의 밭토양 중 용탈 특성)

  • Noh, Hyun Ho;Lee, Jae Yun;Lee, Kwang Hun;Park, Hyo Kyoung;Kyung, Kee Sung
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.3
    • /
    • pp.168-177
    • /
    • 2013
  • This experiment was carried out to estimate leaching potential of thirteen endocrine disruptor-suspected pesticides in upland soils using soil columns (5 cm I.D. ${\times}$ 35 cm H.) packed with soil A (sandy loam) and soil B (loam). When 12.6 mL of water, average precipitation in Cheongju area during the period from June to August, 2001-2010, was percolated through soil column packed with soil A every day for 21 days, no pesticides were detected from leachate, with the exception of metribuzin which was detected with negligible. Also, when 2 L of water was percolated consecutively five times through soil columns packed with soil A and B, irrespective of soil types, cypermethrin, endosulfan, fenvalerate, parathion and trifluralin, which were very low water solubilities and high soil $K_{oc}s$, were not detected from leachate and were distributed mostly in the depth of 0-5 cm, representing that water solubility and soil $K_{oc}$ are major contributing factors to their leaching behavior. Despite high average leaching rates in carbaryl and methomyl, actual possibilities of ground water contamination in the agricultural environment by them would be very low, considering that the negligible amount of pesticide was percolated through a lysimeter with an undisturbed soil core simulating the field conditions, while most of pesticide was percolated through a soil column with the disturbed soil profile.