• Title/Summary/Keyword: Precipitation types

Search Result 291, Processing Time 0.024 seconds

The Variation Patterns over a Period of 10 Days and Precipitation Regions of Summer Precipitation in Korea (한국의 하계 강수량의 순변화 유형과 강수지역)

  • Park Hyun-Wook;Ryu Chan-Su
    • Journal of the Korean earth science society
    • /
    • v.26 no.5
    • /
    • pp.417-428
    • /
    • 2005
  • The seasonal variation and frequency of precipitation phenomenon of the Korean Peninsula in summer show strong local weather phenomena because of its topographical and geographical factors in the northeastern area of Asia. The characteristics of the prevailing weather patterns in summer precipitation in Korea have great influences on the variation patterns and the appearances over a ten-day period during the summer precipitation. The purpose of this paper is to induce variation patterns over a period 10 days during the summer precipitation, clarify the variations of their space scales, and study the subdivision of precipitation regions in Korea according to the combinations of precipitation amounts and variation pattern during the period, using the mean values during the years $1991\~2003$ at 78 stations in Korea. The classified precipitation of a period of 10 days of summer precipitation, and the principal component vector and the amplitude coefficient by the principal component analysis were used for this study. The characteristics of variation pattern over the ten-day period can be chiefly divided into two categories and the accumulated contributory rate of these is $64.3\%$. The variation patterns of summer precipitation during period of 10 days in Korea are classified into 9 types from A to K. In addition, regional divisions of summer precipitation in Korea can be classified into 17 types.

Characteristics Analysis of the Winter Precipitation by the Installation Environment for the Weighing Precipitation Gauge in Gochang (고창 지점의 강수량계 설치 환경에 따른 겨울철 강수량 관측 특성 분석)

  • Kim, Byeong Taek;Hwang, Sung Eun;Lee, Young Tae;Shin, Seung Sook;Kim, and Ki Hoon
    • Journal of the Korean earth science society
    • /
    • v.42 no.5
    • /
    • pp.514-523
    • /
    • 2021
  • Using the precipitation data observed at the Gochang Standard Weather Observatory (GSWO) during the winter seasons from 2014 to 2016, we analyzed the precipitation characteristics of the winter observation environment. For this study, we used four different types of precipitation gauges, i.e., No Shield (NS), Single Alter (SA), Double Fence Intercomparison Reference (DFIR), and Pit Gauge (PG). We analyzed the data from each to find differences in the accumulated precipitation, characteristics of the precipitation type, and the catch efficiency according to the wind speed based on the DFIR. We then classified these into three precipitation types, i.e., rain, mixed precipitation, and snow, according to temperature data from Gochang's Automated Synoptic Observing System (ASOS). We considered the DFIR to be the standard precipitation gauge for our analysis and the cumulative winter precipitation recorded by each other gauge compared to the DFIR data in the following order (from the most to least similar): SA, NS, and PG. As such, we find that the SA gauge is the most accurate when compared to the standard precipitation gauge used (DFIR), and the PG system is inappropriate for winter observations.

Pozzolanic reaction of the waste glass sludge incorporating precipitation additives

  • You, Ilhwan;Choi, Jisun;Lange, David A.;Zi, Goangseup
    • Computers and Concrete
    • /
    • v.17 no.2
    • /
    • pp.255-269
    • /
    • 2016
  • The waste glass sludge is a waste produced in the glass industry. It is in a dust form and disposed with water. In the disposal process, various cohesive agents are incorporated in order to precipitate the glass particles efficiently. In this paper, we investigate the pozzolanic reaction of the waste glass sludge incorporating precipitation additives experimentally. The consumption of calcium hydroxide, the setting time and the compressive strength and the pore structure were tested for two different types of the waste glass sludge depending on whether precipitation additives were used. It was found that the waste glass sludge incorporating the precipitation additives had a higher pozzolanic potential than the reference waste glass sludge without precipitation additives.

The Synoptic Meteorological Characteristics of Spring Rainfall in South Korea during 2008~2012 (최근 5년(2008~2012) 간 우리나라에 내린 봄비의 종관기상학적 특성)

  • Park, So-Yeon;Lee, Yong-Gon;Kim, Jung-Yun;Ahn, Suk-Hee;Kim, Baek-Jo
    • Journal of Environmental Science International
    • /
    • v.22 no.4
    • /
    • pp.443-451
    • /
    • 2013
  • Spring rainfall events were comprehensively analyzed based on the distribution of precipitation amount and the related synoptic weather between 2008~2012. Forty-eight cases are selected among the rain events of the entire country, and each distribution of the 24-hour accumulated precipitation amount is classified into three types: evenly distributed rain(Type 1), more rain in the southern area and south coast region (Type 2), and more rain in the central region (Type 3), respectively. Type 1 constitutes the largest part(35 cases, 72.9%) with mean precipitation amount of 19.4 mm, and the 17 cases of Type 1 are observed in March. Although Type B and C constitutes small parts (11 cases, 22.9% and 2 cases, 4.2%), respectively. The precipitation amount of these types is greater than 34.5 mm and occurred usually in April. The main synoptic weather patterns affecting precipitation distribution are classified into five patterns according to the pathway of low pressures. The most influential pattern is type 4, and this usually occurs in March, April, and May (Low pressures from the north and the ones from the west and south consecutively affect South Korea, 37.5%). The pattern 3(Low pressures from the south affect South Korea, 25%) happens mostly in April, and the average precipitation is usually greater than 30 mm. This value is relatively higher than the values in any other patterns.

Regional Divisions of Honam Region by Summer Precipitation and Variation Patterns over a Period of 10 days (하계강수량과 그 순변화형에 의한 호남지방의 지역 구분)

  • Park, Hyun-Wook
    • Journal of the Korean association of regional geographers
    • /
    • v.11 no.1
    • /
    • pp.101-113
    • /
    • 2005
  • The seasonal variation and frequency of precipitation phenomenon of the Honam region in summer show strong local weather phenomena because of its topographical and geographical factors in southwestern area of Korea. The propose of this treatise is to induce variation patterns over a period 10 days of summer precipitation(that is one of the important elements of the precipitation characteristics), clarify the variations of their space scales, and study the subdivision of precipitation regions in Honam according to the combinations of precipitation amounts and variation pattern over a period of a 10 days of summer precipitation, using the mean values during the years 1994$\sim$2003 at 79 stations(the surface synoptic stations 16 AWS 63) of Honam region. The classified precipitation of a period of 10 days summer precipitation, and the principal component vector and the amplitude coefficient by the principal component analysis were used for this study. The characteristics of variation pattern over a period of 10 days of summer precipitation can be chiefly divided into four categories and the accumulated contributory rate of these is 78.0%. And the change patterns of summer precipitation during a period of 10 days in honam region are classified into 11 types from A to K And regional divisions of summer precipitation in Honam region can be classified into 18 types.

  • PDF

Classification of Precipitation Type Using the Wind Profiler Observations and Analysis of the Associated Synoptic Conditions: Years 2003-2005 (윈드프로파일러 관측 자료를 이용한 장마철 강수 형태 분류와 관련된 종관장의 특성 분석: 2003년-2005년)

  • Won, Hye-Yeong;Jo, Cheon-Ho;Baek, Seon-Gyun
    • Atmosphere
    • /
    • v.16 no.3
    • /
    • pp.235-246
    • /
    • 2006
  • Remote sensing techniques using satellites or the scanning weather radars depend mostly on the presence of clouds or precipitation, and leave the extensive regions of clear air unobserved. But wind profilers provide the most direct measurements of mesoscale vertical air motion in the troposphere, even in the context of heavy precipitation. In this paper, the precipitation events during the Changma period was classified into 4 precipitation types - stratiform, mixed stratiform/ convective, deep convective, and shallow convective. The parameters for the classification of analysis are the vertical structure of reflectivity, Doppler velocity, and spectral width measured with the wind profiler at Haenam for a three-year period (2003-2005). In addition, the synoptic fields and total amount of precipitation were analyzed using the Global Final Analyses (FNL) data and the Global Precipitation Climatology Project (GPCP) data. During the Changma period, the results show that the stratiform type was dominant under the moist-neutral atmosphere in 2003, whereas the deep convective type was under the moist unstable condition in 2004. The stratiform type was no less popular than the deep convective type among four seasons because the moist neutral layer was formed by the convergence between the upper-level jet and the low-level jet, and by the moisture transport along the western rim of the North Pacific subtropical anticyclone.

Studies on the Serological Classification for Korean aspergilli (한국산 Aspergilli의 혈청학적 분류방법)

  • 문희주;이배함
    • Korean Journal of Microbiology
    • /
    • v.12 no.4
    • /
    • pp.180-187
    • /
    • 1974
  • Of the Asp. spp. isolated by the Institute of Applied Microbiology, Kon-Kuk University, 7 strains were selected for the study of the immunological differencences among them using gel precipitation test. The strains were the following types : 1 type of flavus and 2 types of oryzae were isolated from Meju ; 1 type of flavus from Nuruk ; and each one type of flavus, parasiticus and oryzae from Kokja.Asp.flavus from ATCC, Asp. parasiticus nad Asp. niger NRRL strains were also used in the study as a standard. From this study, several points can be raised ; 1) There was no common antigenic property between Asp. niger and Asp. flavus, because of no formation of reaction line. Therefore, all strains could be easily distinguished. 2) There was common antigenic property, that is, the formation of reaction line between Asp. flavus and Asp. parasticus. Accordingly two strains could not be easily distinguished by the gel precipitation test. 3) Each type of oryzae, parasiticus and flavus of Asp. flavus group had common antigen one another as well as specific antigens only in the difference of the reaction lines, so they could be easily identified in the gel precipitation test. 4) Each isolated strain from Meju and Nuruk appeared to be identical. 5) It was shown that the gel precipitation test of serological methods was very useful for the classification of Asp. spp.

  • PDF

Dependence of Energetic Electron Precipitation on the Geomagnetic Index Kp and Electron Energy

  • Park, Mi-Young;Lee, Dae-Young;Shin, Dae-Kyu;Cho, Jung-Hee;Lee, Eun-Hee
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.247-253
    • /
    • 2013
  • It has long been known that the magnetospheric particles can precipitate into the atmosphere of the Earth. In this paper we examine such precipitation of energetic electrons using the data obtained from low-altitude polar orbiting satellite observations. We analyze the precipitating electron flux data for many periods selected from a total of 84 storm events identified for 2001-2012. The analysis includes the dependence of precipitation on the Kp index and the electron energy, for which we use three energies E1 > 30 keV, E2 > 100 keV, E3 > 300 keV. We find that the precipitation is best correlated with Kp after a time delay of < 3 hours. Most importantly, the correlation with Kp is notably tighter for lower energy than for higher energy in the sense that the lower energy precipitation flux increases more rapidly with Kp than does the higher energy precipitation flux. Based on this we suggest that the Kp index reflects excitation of a wave that is responsible for scattering of preferably lower energy electrons. The role of waves of other types should become increasingly important for higher energy, for which we suggest to rely on other indicators than Kp if one can identify such an indicator.

The Characteristics of the Anomaly Level and Variability of the Monthly Precipitation in Kyeongnam, Korea (경남지방의 월강수량의 변동율과 Anomaly Level의 출현특성)

  • 박종길;이부용
    • Journal of Environmental Science International
    • /
    • v.2 no.3
    • /
    • pp.179-191
    • /
    • 1993
  • This paper aims to know the characteristics of occurrence of the anomaly level and variability of the monthly precipitation in Kyeongnam, Korea. For this study, it was investigated 주e distribution of the annual and cont비y mean precipitation, the precipitation variability and its annual change, and the characteristics of occurrence of the anomaly level in Kyeongnam area the results were summarized as follows : 1) she mean of annual total precipitation averaged over Kyeongnam area is 1433.3mm. I'he spatial distribution of the annual total precipitation shows that in Kyeongnam area, the high rainfall area locates in the southwest area and south coast and the low rainfall area in an inland area. 2) Monthly mean precipitation in llyeongnam area was the highest in July(266.4mm) 각lowed by August(238.0mm), June(210.2mm) in descending order. In summer season, rainfall was concentrated and accounted for 49.9 percent of the annual total precipitation. Because convergence of the warm and humid southwest current which was influenced by Changma and typhoon took place well in this area. 3) The patterns of annual change of precipitaion variability can be divided into two types; One is a coast type and the other an inland type. The variability of precipitation generally appears low in spring and summer season and high in autumn and winter season. This is in accord with the large and small of precipitation. 4) The high frequency of anomaly level was N( Normal)-level and the next was LN( Low Informal) -level and 25(Extremely Subnormal)-level was not appeared in all stations. The occurrence frequency of N level was high in high rainfall area and distinguish성 in spring and summer season but the low rainfall area was not. hey Words : anomaly level, variability, precipitation, coast type, inland type.

  • PDF

A Study on Grain Yield Response and Limitations of CERES-Barley Model According to Soil Types

  • Sang, Wan-Gyu;Kim, Jun-Hwan;Shin, Pyeong;Cho, Hyeoun-Suk;Seo, Myung-Chul;Lee, Geon-Hwi
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.6
    • /
    • pp.509-519
    • /
    • 2017
  • Crop simulation models are valuable tools for estimating crop yield, environmental factors and management practices. The objective of this study was to evaluate the effect of soil types on barley productivity using CERES (Crop Environment REsource Synthesis)-barley, cropping system model. So the behavior of the model under various soil types and climatic conditions was evaluated. The results of the sensitivity analysis in temperature, $CO_2$, and precipitation showed that soil types had a direct impact on the simulated yield of CERES-barley model. We found that barley yield in clay soils would be more sensitive to precipitation and $CO_2$ in comparison with temperature. And the model showed limited accuracy in simulating water and nitrogen stress index for soil types. In general, the barley grown on clay soils were less sensitive to water stress than those grown on sandy soils. Especially it was found that the CERES model underestimated the effect of water stress in high precipitation which led to overprediction of crop yield in clay soils. In order to solve these problems and successfully forecast grain yield, further studies on the modification of the water stress response of crops should be considered prior to use of the CERES-barley model for yield forecasting.