• Title/Summary/Keyword: Precipitation pattern

Search Result 352, Processing Time 0.031 seconds

Water Resources Utilization Pattern of JangSung Reservoir (장성호 수자원 이용 패턴)

  • Yoon, Kwang-Sik;Han, Kuk-Heon;Yoon, Suk-Gun;Jung, Jae-Woon
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.291-294
    • /
    • 2003
  • The Water resources utilization pattern of Jangsung reservoir was studied. The observed precipitation and existing reservoir operation data such as irrigation amount, reservoir storage, river maintenance requirement, flood control discharge were collected for ten years period and analyzed. Major findings of this study are as follows: The observed average, minimum, maximum annual precipitation were 905.1mm, 1,977.3mm, 1,554.3mm during study period, respectively. The average annual irrigation amount was 554.5mm, irrigation amount of drought years of '92 and '94 was 604.6mm, 679.2mm, respectively. However, irrigation amount of extended drought year '95 was 384.9mm. It showed that supplying capacity of Jangsung reservoir was limited when consecutive 2 year drought occurred. The main water resources usage of Jangsung reservoir was irrigation, but flood control discharge exceed irrigation amount exceptionally when high precipitation occurred. The reservoir operation record revealed that discharge for river maintenance was delivered even drought years.

  • PDF

Analysis of Precipitation Chemistry at Rural Site in the Eastern Coast, Korea

  • Kang, Gong-Unn;Shin, Dae-Ywen;Kim, Hui-Kang
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.E1
    • /
    • pp.29-39
    • /
    • 2003
  • The 10-day interval basis measurements of precipitation samples at Yangyang, the rural and coastal area on the eastern coast of the Korea peninsula were accomplished for understanding the precipitation chemistry and the temporal variations of major ions September 1991 to February 1997. The precipitation was slightly acidic, and 37% of the samples in winter were pH less than 4.5. The concentrations of cations were found on the order $Na^+\;>\;{NH_4}^+\;>\;Ca^{2+}\;>\;Mg^{2+}\;>\;K^+$ and those of anions followed the pattern $Cl^-\;>\;{SO_4}^{2-}\;>\;{NO_3}^-$. Neglecting sea salt components, the major ions controlling precipitation chemistry were nss-${SO_4}^{2-}$ and ${NO_3}^-$ in anion and ${NH_4}^+$ and nss-$Ca^{2+}$ in cation. Concentrations of these ions were lower than those measured at urban sites in Korea, but were higher than those measured in Japan. Most of nss-${SO_4}^{2-}$ and ${NO_3}^-$ were neutralized by ammonia and calcium species, especially alkaline soil particles in spring and ammonia gas in other seasons. Considering also the annual value of [nss -${SO_4}^{2-}$]/[${NO_3}^-$] ratio of 2.62 and the neutralizing factors, ammonium sulphate compounds were dominant. Annual mean concentrations of these ions showed relatively small fluctuations, while larger seasonal variations were observed with higher levels in spring and winter. Precipitation amount, influence extent of acidic gases and alkaline particles long-range transported from China continent, and energy consumption pattern in each season might be able to explain this seasonal trend.sonal trend.

The Synoptic Meteorological Characteristics of Spring Rainfall in South Korea during 2008~2012 (최근 5년(2008~2012) 간 우리나라에 내린 봄비의 종관기상학적 특성)

  • Park, So-Yeon;Lee, Yong-Gon;Kim, Jung-Yun;Ahn, Suk-Hee;Kim, Baek-Jo
    • Journal of Environmental Science International
    • /
    • v.22 no.4
    • /
    • pp.443-451
    • /
    • 2013
  • Spring rainfall events were comprehensively analyzed based on the distribution of precipitation amount and the related synoptic weather between 2008~2012. Forty-eight cases are selected among the rain events of the entire country, and each distribution of the 24-hour accumulated precipitation amount is classified into three types: evenly distributed rain(Type 1), more rain in the southern area and south coast region (Type 2), and more rain in the central region (Type 3), respectively. Type 1 constitutes the largest part(35 cases, 72.9%) with mean precipitation amount of 19.4 mm, and the 17 cases of Type 1 are observed in March. Although Type B and C constitutes small parts (11 cases, 22.9% and 2 cases, 4.2%), respectively. The precipitation amount of these types is greater than 34.5 mm and occurred usually in April. The main synoptic weather patterns affecting precipitation distribution are classified into five patterns according to the pathway of low pressures. The most influential pattern is type 4, and this usually occurs in March, April, and May (Low pressures from the north and the ones from the west and south consecutively affect South Korea, 37.5%). The pattern 3(Low pressures from the south affect South Korea, 25%) happens mostly in April, and the average precipitation is usually greater than 30 mm. This value is relatively higher than the values in any other patterns.

Is it suitable to Use Rainfall Runoff Model with Observed Data for Climate Change Impact Assessment? (관측자료로 추정한 강우유출모형을 기후변화 영향평가에 그대로 활용하여도 되는가?)

  • Poudel, Niroj;Kim, Young-Oh;Kim, Cho-Rong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.252-252
    • /
    • 2011
  • Rainfall-runoff models are calibrated and validated by using a same data set such as observations. The past climate change effects the present rainfall pattern and also will effect on the future. To predict rainfall-runoff more preciously we have to consider the climate change pattern in the past, present and the future time. Thus, in this study, the climate change represents changes in mean precipitation and standard deviation in different patterns. In some river basins, there is no enough length of data for the analysis. Therefore, we have to generate the synthetic data using proper distribution for calculation of precipitation based on the observed data. In this study, Kajiyama model is used to analyze the runoff in the dry and the wet period, separately. Mean and standard deviation are used for generating precipitation from the gamma distribution. Twenty hypothetical scenarios are considered to show the climate change conditions. The mean precipitation are changed by -20%, -10%, 0%, +10% and +20% for the data generation with keeping the standard deviation constant in the wet and the dry period respectively. Similarly, the standard deviations of precipitation are changed by -20%, -10%, 0%, +10% and +20% keeping the mean value of precipitation constant for the wet and the dry period sequentially. In the wet period, when the standard deviation value varies then the mean NSE ratio is more fluctuate rather than the dry period. On the other hand, the mean NSE ratio in some extent is more fluctuate in the wet period and sometimes in the dry period, if the mean value of precipitation varies while keeping the standard deviation constant.

  • PDF

The Variation Patterns over a Period of 10 Days and Precipitation Regions of Summer Precipitation in Korea (한국의 하계 강수량의 순변화 유형과 강수지역)

  • Park Hyun-Wook;Ryu Chan-Su
    • Journal of the Korean earth science society
    • /
    • v.26 no.5
    • /
    • pp.417-428
    • /
    • 2005
  • The seasonal variation and frequency of precipitation phenomenon of the Korean Peninsula in summer show strong local weather phenomena because of its topographical and geographical factors in the northeastern area of Asia. The characteristics of the prevailing weather patterns in summer precipitation in Korea have great influences on the variation patterns and the appearances over a ten-day period during the summer precipitation. The purpose of this paper is to induce variation patterns over a period 10 days during the summer precipitation, clarify the variations of their space scales, and study the subdivision of precipitation regions in Korea according to the combinations of precipitation amounts and variation pattern during the period, using the mean values during the years $1991\~2003$ at 78 stations in Korea. The classified precipitation of a period of 10 days of summer precipitation, and the principal component vector and the amplitude coefficient by the principal component analysis were used for this study. The characteristics of variation pattern over the ten-day period can be chiefly divided into two categories and the accumulated contributory rate of these is $64.3\%$. The variation patterns of summer precipitation during period of 10 days in Korea are classified into 9 types from A to K. In addition, regional divisions of summer precipitation in Korea can be classified into 17 types.

Regional Divisions of Honam Region by Summer Precipitation and Variation Patterns over a Period of 10 days (하계강수량과 그 순변화형에 의한 호남지방의 지역 구분)

  • Park, Hyun-Wook
    • Journal of the Korean association of regional geographers
    • /
    • v.11 no.1
    • /
    • pp.101-113
    • /
    • 2005
  • The seasonal variation and frequency of precipitation phenomenon of the Honam region in summer show strong local weather phenomena because of its topographical and geographical factors in southwestern area of Korea. The propose of this treatise is to induce variation patterns over a period 10 days of summer precipitation(that is one of the important elements of the precipitation characteristics), clarify the variations of their space scales, and study the subdivision of precipitation regions in Honam according to the combinations of precipitation amounts and variation pattern over a period of a 10 days of summer precipitation, using the mean values during the years 1994$\sim$2003 at 79 stations(the surface synoptic stations 16 AWS 63) of Honam region. The classified precipitation of a period of 10 days summer precipitation, and the principal component vector and the amplitude coefficient by the principal component analysis were used for this study. The characteristics of variation pattern over a period of 10 days of summer precipitation can be chiefly divided into four categories and the accumulated contributory rate of these is 78.0%. And the change patterns of summer precipitation during a period of 10 days in honam region are classified into 11 types from A to K And regional divisions of summer precipitation in Honam region can be classified into 18 types.

  • PDF

On the Characteristics of the Precipitation Patterns in Korea Due to Climate Change

  • Park, Jong-Kil;Seong, Ihn-Cheol;Kim, Baek-Jo;Jung, Woo-Sik;Lu, Riyu
    • Journal of Environmental Science International
    • /
    • v.23 no.1
    • /
    • pp.25-37
    • /
    • 2014
  • In the present study, we analyzed precipitation patterns and diurnal variation trends of hourly precipitation intensity due to climate change. To that end, we used the hourly precipitation data obtained from 26 weather stations around South Korea, especially Busan, from 1970 to 2009. The results showed that the hourly precipitation was concentrated on a specific time of day. In particular, the results showed the so-called "morning shift" phenomenon, which is an increase in the frequency and intensity of hourly precipitation during the morning. The morning shift phenomenon was even more pronounced when a higher level of hourly precipitation intensity occurred throughout the day. Furthermore, in many regions of Korea, including Busan, this morning shift phenomenon became more prevalent as climate change progressed.

Classification of Intraseasonal Oscillation in Precipitation using Self-Organizing Map for the East Asian Summer Monsoon (동아시아 여름몬순 지수의 자기조직화지도(SOM)에 의한 강수량의 계절 내 진동 분류)

  • Chu, Jung-Eun;Ha, Kyung-Ja
    • Atmosphere
    • /
    • v.21 no.3
    • /
    • pp.221-228
    • /
    • 2011
  • The nonlinear characteristics of summer monsoon intraseasonal oscillation (ISO) in precipitation, which is manifested as fluctuations in convection and circulation, is one of the major difficulty on the prediction of East Asian summer monsoon (EASM). The present study aims to identify the spatial distribution and time evolution of nonlinear phases of monsoon ISO. In order to classify the different phases of monsoon ISO, Self-Organizing Map(SOM) known as a nonlinear pattern recognition technique is used. SOM has a great attractiveness detecting self-similarity among data elements by grouping and clustering such self-similar components. The four important patterns are demonstrated as Meiyu-Baiu, Changma, post-Changma, and dry-spell modes. It is found that SOM well captured the formation of East Asian monsoon trough during early summer and its northward migration together with enhanced convection over subtropical western Pacific and regionally intensive precipitation including Meiyu, Changma and Baiu. The classification of fundamental large scale spatial pattern and evolutionary history of nonlinear phases of monsoon ISO provides the source of predictability for extended-range forecast of summer precipitation.

The Relationship of Froude Number and Developed Cloud Band Locations Near Yeongdong Region Under the Siberian High Pressure System (시베리아 고기압 영향으로 영동지역 부근에서 발달한 구름대의 위치와 Froude 수와의 관계)

  • Kim, Yu-Jin;Kim, Man-Ki;Lee, Jae Gyoo
    • Atmosphere
    • /
    • v.29 no.3
    • /
    • pp.325-342
    • /
    • 2019
  • Precipitation and no-precipitation events under the influence of the Siberian high pressure system in Yeondong region, were analysed and classified as four types [obvious precipitation event (OP) type, obvious no-precipitation event (ON) type, ambiguous precipitation event (AP) type and ambiguous no-precipitation event (AN) type], according to the easiness in determining whether to have precipitation or not in Yeongdong region, to help in improving the forecast skill. Concerning the synoptic pressure pattern, for OP type, the ridge of Siberian high extends from Lake Baikal toward Northeast China, and there is a northerly wind upstream of the northern mountain complex (located near the Korean-Chinese border). On the other hand, for ON type, the ridge of Siberian high extends southeastward from Lake Baikal, and there is a westerly wind upstream of the northern mountain complex. The pressure pattern of AP type was similar to the OP type and that of AN type was also similar to ON type. Thus it was difficult to differentiate AP type and OP type and AN type and ON type based on the synoptic pressure pattern only. The four types were determined by U (wind speed normal to the Taebaek mountains) and Froude number (FN). That is, for OP type, average FN and U at Yeongdong coast are ~2.0 and ${\sim}6m\;s^{-1}$, and those at Yeongseo region are 0.0 and $0.1m\;s^{-1}$, respectively. On the contrary, for ON type, average FN and U at Yeongdong coast are 0.0 and $0.2m\;s^{-1}$, and those at Yeongseo region are ~1.0 and ${\sim}4m\;s^{-1}$, respectively. For AP type, average FN and U at Yeongdong coast are ~1.0 and ${\sim}4m\;s^{-1}$, and those at Yeongseo region are 0.0 and $0.2m\;s^{-1}$, whereas for AN type, average FN and U at Yeongdong coast are 0.1 and $0.6m\;s^{-1}$ and those at Yeongseo region are ~1.0 and ${\sim}3m\;s^{-1}$, respectively. Based on the result, a schematic diagram for each type was suggested.

A study of urbanization effect to a precipitation pattern in a urban area (도시화가 도시지역 강우변화에 미치는 영향 연구)

  • Oh Tae Suk;Ahn Jae Hyun;Moon Young Il;Jung Min Su
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.894-899
    • /
    • 2005
  • Since 1970s, rapid industrialization brought urbanization nationwide. In this paper, precipitation changes have been studied for Seoul and other 6 major cities using 31 years of precipitation data from 1973 to 2003. In addition, to consider the other global climatic impacts including El Nino events, precipitation change comparisons have been made between urban and rural areas. Thus, statistical analysis methods have been adopted for annual precipitation, summer precipitation, 1 hour annual maxima series, and 24 hour annual maxima series for both urban and rural areas. The result yields that annual and summer precipitation have been increased in urban areas compare to rural areas.

  • PDF