• Title/Summary/Keyword: Precipitation component

Search Result 209, Processing Time 0.032 seconds

Empirical Mode Decomposition (EMD) and Nonstationary Oscillation Resampling (NSOR): II. Applications in Hydrology and Climate sciences

  • Lee, Tae-Sam;Ouarda, TahaB.M.J.;im, Byung-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.91-91
    • /
    • 2011
  • In the present study, the proposed EMD and NSOR models has been applied in hydrology and climate sciences. Here, we present those applications as the following: (1) to extend future scenarios of Global Surface Temperature Anomaly including long-term oscillation component; (2) to extend the future evolution of the Eastern Canada winter precipitation; (3) to apply EMD in detecting climate change.

  • PDF

Synthesis of Two-Component Titanate Powders Using Ethylene Glycol Solution (에틸렌글리콜 용액을 이용한 2성분계 Titanate 분말의 합성)

  • 이상진;권명도
    • Journal of Powder Materials
    • /
    • v.9 no.5
    • /
    • pp.346-351
    • /
    • 2002
  • Pure and fine, two-component titanate powders (barium titanate, calcium titanate etc.) were synthesized by an ethylene glycol method. Titanium isopropoxide and other metal ionic salts were dissolved in liquid-type ethylene glycol without any precipitation. In non-aqueous system, the amount of ethylene glycol affected the solubility and homogeneity of metal cation sources in the solution. At the optimum amount of the polymer, the metal ions were dispersed effectively in solution and a homogeneous polymeric network was formed. Most of the synthesized powders had sub-micron or nano-size primary particles after calcination and the agglomerated calcined powders were easily ground by ball milling process. All synthesized titanate powders had stable crystallization behavior at low temperature and high specific surface area after ball milling. The crystallization behavior and the microstructures of the calcined powders were affected on the ethylene glycol content.

Fabrication of Nano-sized Titanate Powders by an Ethylene Glycol Solution Route

  • Lee, S.J.;Lee, M.J.;Yoon, Y.S.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.440-441
    • /
    • 2006
  • Several titanate powders ($Al_2TiO_5,\;SrTiO_3$, etc.) were synthesized by an ethylene glycol solution route. Titanium isopropoxide and nitrate salts were dissolved in stoichiometric proportions in liquid-type ethylene glycol without any precipitation. The parent precursor sols were dried to porous gels, and then the gels were calcined and crystallized. All synthesized titanate powders had stable crystallization behavior at low temperature and high specific surface area after a simple ball-milling process. A three-component PZT $(Pb(Zr_{0.52}{\cdot}Ti_{0.48})O_3)$ powder was also synthesized successfully by the ethylene glycol method. In this study, the characteristics of the multi-component titanate powders by the ethylene glycol method are examined.

  • PDF

Classification of Ambient Particulate Samples Using Cluster Analysis and Disjoint Principal Component Analysis (군집분석법과 분산주성분분석법을 이용한 대기분진시료의 분류)

  • 유상준;김동술
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.1
    • /
    • pp.51-63
    • /
    • 1997
  • Total suspended particulate matters in the ambient air were analyzed for eight chemical elements (Ca, Co, Cu, Fe, Mn, Pb, Si, and Zn) using an x-ray fluorescence spectrometry (XRF) at the Kyung Hee University - Suwon Campus during 1989 to 1994. To use these data as basis for source identification study, membership of each sample was selected to represent one of the well defined sample groups. The data sets consisting of 83 objects and 8 variables were initially separated into two groups, fine (d$_{p}$<3.3 ${\mu}{\textrm}{m}$) and coarse particle groups (d$_{p}$>3.3 ${\mu}{\textrm}{m}$). A hierarchical clustering method was examined to obtain possible member of homogeneous sample classes for each of the two groups by transforming raw data and by applying various distances. A disjoint principal component analysis was then used to define homogeneous sample classes after deleting outliers. Each of five homogeneous sample classes was determined for the fine and the coarse particle group, respectively. The data were properly classified via an application of logarithmic transformation and Euclidean distance concept. After determining homogeneous classes, correlation coefficients among eight chemical variables within all the homogeneous classes for calculated and meteorological variables (temperature. relative humidity, wind speed, wind direction, and precipitation) were examined as well to intensively interpret environmental factors influencing the characteristics of each class for each group. According to our analysis, we found that each class had its own distinct seasonal pattern that was affected most sensitively by wind direction.ion.

  • PDF

Hydrograph Separation using Geochemical tracers by Three-Component Mixing Model for the Coniferous Forested Catchment in Gwangneung Gyeonggido, Republic of Korea

  • Kim, Kyongha;Yoo, Jae-Yun
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.5
    • /
    • pp.561-566
    • /
    • 2007
  • This study was conducted to clarify runoff production processes in forested catchment through hydrograph separation using three-component mixing model based on the End Member Mixing Analysis (EMMA) model. The study area is located in the coniferous-forested experimental catchment, Gwangneung Gyeonggido near Seoul, Korea (N 37 45', E 127 09'). This catchment is covered by Pinus Korainensis and Abies holophylla planted at stocking rate of 3,000 trees $ha^{-1}$ in 1976. Thinning and pruning were carried out two times in the spring of 1996 and 2004 respectively. We monitored 8 successive events during the periods from June 15 to September 15, 2005. Throughfall, soil water and groundwater were sampled by the bulk sampler. Stream water was sampled every 2-hour through ISCO automatic sampler for 48 hours. The geochemical tracers were determined in the result of principal components analysis. The concentrations of $SO_4{^{2-}$ and $Na^+$ for stream water almost were distributed within the bivariate plot of the end members; throughfall, soil water and groundwater. Average contributions of throughfall, soil water and groundwater on producing stream flow for 8 events were 17%, 25% and 58% respectively. The amount of antecedent precipitation (AAP) plays an important role in determining which end members prevail during the event. It was found that ground water contributed more to produce storm runoff in the event of a small AAP compared with the event of a large AAP. On the other hand, rain water showed opposite tendency to ground water. Rain water in storm runoff may be produced by saturation overland flow occurring in the areas where soil moisture content is near saturation. AAP controls the producing mechanism for storm runoff whether surface or subsurface flow prevails.

Rapid Determination of Electroplating Solutions (1) -Copper from Copper Plating Solutions (각종 도금액의 신속분석법 (제 1 보))

  • 염희택
    • Journal of the Korean institute of surface engineering
    • /
    • v.1 no.1
    • /
    • pp.5-13
    • /
    • 1967
  • Up to this date, numerous methods of analysis of electropling solutions are published. Some, however, need lots of works before reaching final results, or require high technique and special instruments, and also some are unaccurate due to unclearnes of end point. Like our undevelop countries, technicians of electroplating shops are most high school graduates or under, and have not much knowledge on chemistry. Furthermore, those technicians have to control their plating solutions by themselves without having enough analytical laboratory equipment . Therefore, in this paper the simplest, besides accurate method is investigated after comparing numerous methods published. Among the methods of copper determinations from acid and alkaline copper plating baths, EDTA titration method are chosen, due to these methods are the simpest and fastest for the evaluation of metal content, without requirng any special instrument. For acid copper solutions, chelate titrations were accurate enough. Since the end point of titration of chelate method is variable according to the kind of indicators and other metal's coexisitence as well as solution component, many difficulties were encountered from cyanide copper, on the contrary of acid copper bath. PAN , PV, and MX indicators were tried , but it is found that MX is the best. In chyanide solution ,due to cyanide is the masking reagent , elimination of this component is essential , and finally found that elimination CN-by precipitation with AgNO$_3$ solution was the simplest and the most accurate way among others. This method was very accurate for the new plating solutions even coexistence with organic brightners. However used solutions for long months running have to be predetermined the accurate copper value by thiosulfate method form time to time, before chelate titration by means of AgNO$_3$ precipitation. Always some constant deviations will be seen according to the solutions nature. Therefore those deviation values have to be compensated each time.

  • PDF

Analysis and evaluation of hydrological components in a water curtain cultivation site (수막재배지역의 수문성분 해석 및 평가)

  • Chung, Il-Moon;Chang, Sun Woo
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.9
    • /
    • pp.731-740
    • /
    • 2016
  • This study conducts the hydrological component analysis from 2010 to 2015 at the water curtain cultivation area in Cheongwon-gu, Cheongju-si and investigates the monthly based groundwater recharge variation. It is found that the rates of evaportranspiration, surface runoff and groundwater recharge were varied according to the total annual precipitation and their correlations were also changed annually. Annual recharge rates for annual precipitation ranged from 8.3% to 19%, and their coefficient of determination ranged from 0.39 to 0.94. Especially in 2015, when the severe drought came upon this area, the lack of groundwater recharge made groundwater level decrease consistently. Thus, it is thought that the special method of estimating exploitable groundwater in water curtain cultivation site is to be introduced.

Analysis of Correlation between Particulate Matter in the Atmosphere and Rainwater Quality During Spring and Summer of 2020 (봄·여름철 대기 중 미세먼지와 빗물 수질 상관성 분석)

  • Park, Hyemin;Kim, Taeyong;Heo, Junyong;Yang, Minjune
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_2
    • /
    • pp.1859-1867
    • /
    • 2021
  • This study investigated seasonal characteristics of the particulate matter (PM) in the atmosphere and rainwater quality in Busan, South Korea, and evaluated the seasonal effect of PM10 concentration in the atmosphere on the rainwater quality using multivariate statistical analysis. The concentration of PM in the atmosphere and meteorological observations(daily precipitation amount and rainfall intensity) are obtained from automatic weather systems (AWS) by the Korea Meteorological Administration (KMA) from March 2020 to August 2020. Rainwater samples (n = 216, 13 rain events) were continuously collected from the beginning of the precipitation using the rainwater collecting device at Pukyong National University. The samples were analyzed for pH, EC (electrical conductivity), water-soluble cations(Na+, Mg2+, K+, Ca2+, and NH4+), and anions(Cl-, NO3-, and SO42-). The concentration of PM10 in the atmosphere was steadily measured before and after the precipitation with a custom-built PM sensor node. The measured data were analyzed using principal component analysis (PCA) and Pearson correlation analysis to identify relationships between the concentration of PM10 in the atmosphere and rainwater quality. In spring, the daily average concentration of PM10 (34.11 ㎍/m3) and PM2.5 (19.23 ㎍/m3) in the atmosphere were relatively high, while the value of daily precipitation amount and rainfall intensity were relatively low. In addition, the concentration of PM10 in the atmosphere showed a significant positive correlation with the concentration of water-soluble ions (r = 0.99) and EC (r = 0.95) and a negative correlation with the pH (r = -0.84) of rainwater samples. In summer, the daily average concentration of PM10 (27.79 ㎍/m3) and PM2.5 (17.41 ㎍/m3) in the atmosphere were relatively low, and the maximum rainfall intensity was 81.6 mm/h, recording a large amount of rain for a long time. The results indicated that there was no statistically significant correlation between the concentration of PM10 in the atmosphere and rainwater quality in summer.

A Study on the Characteristics of Ambient Suspended Particulate Matter at Coastal Area, Kangwha (해안지역 대기부유미립자상 물질의 특성에 관한 연구)

  • 강공언;우상윤;강병욱;김희강
    • Journal of Environmental Health Sciences
    • /
    • v.20 no.4
    • /
    • pp.1-9
    • /
    • 1994
  • In order to investigate the regional level of air pollutants at Kangwha island situated on the western coast in Korea, the suspended particulate matter samples were collected by using the low volume air sampler on ten interval from March 1992 to February 1993 and the mass concentration of suspended particulate matter (SPM) and the chemical composition of water-soluble major ionic components in SPM samples were measured. During the sampling period, the average concentration of SPM under diameter 10 $\mu$m was found to be 48 $\mu$g/m$^3$ (+ 12). The seasonal concentration of SPM was showed in order of spring>fall>winter>summer. It was considered that higher concentration on spring than other season was affected by the long-range transport of Yellow sand particulate from China continent and lower concentration on summer by the washout and rainout effect of large rainfall. The content of water-soluble component in SPM samples was founded to be about 31% (14.69 $\mu$g/m$^3$) and 65% was unknown or unanalyzed. The content of cationic component showed in order of NH$_4^+$ (44.6%)>Na$^+$ (21.2%)>K$^+$ (14.7%)>Ca$^{2+}$ (13.6%)>Mg$^{2+}$ (5.9 %) and the content of anionic component SO$_4^{2-}$ (62.5%)>NO$_3^-$ (22.3%)>Cl$^-$ (15.2%), respectively. This fact indicates that ammonium and sulfate ion of water-soluble component in SPM sample were dominant in this region. From the chemical composition of water-soluble component, the most of Na$^+$, Mg$^{2+}$ and Cl$^-$ were originated from seawater source but K$^+$, Ca$^{2+}$ and SO$_4^{2-}$ were originated from other non-marine source. The contribution of seasalt to the composition of precipitation was 23%.

  • PDF

A study on the stability of alcohlic toilet water in cosmetics (화장품(化粧品)에서 알코올성(性) 화장수(化粧水)의 안정도(安定度)에 관(關)한 연구(硏究))

  • Sung, Ki-Chun;Kim, Ki-Jun;Lee, Hoo-Seol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.45-52
    • /
    • 1997
  • It is the problem point of stability for this study to produce cosmetics and to occur in the circulation process, and specially in a case of alcoholic toilet water the precipitation materials to float on content materials has study on the solubility of perfume, and it has practiced in order to examine the problem point whether the raw materials of plastic vessel is or not harmful in content materials. In testing result, A study on stability of alcoholic toilet water is above all the precipitation materials which floats in content materials, and It is appeared by combination ratio to the raw materials of perfume, ethanol, solubilizer and refining water etcs, and in second the alkali degree which has gushed out of glass vessel can understand the thing that the change of PH is largely increased following to the passage of time, and in third the harmful component of content materials out of raw material in plastics vessel must certainly consider a stability and a safety in quality control of products.