최근 이상기후로 인한 집중호우 발생빈도와 이로 인한 국지적인 홍수 피해가 증가하고 있다. 이러한 점에서 홍수피해 예방측면에서 수치예보 정보 활용이 요구되고 있다. 그러나 수치예보모델은 초기 조건 및 지형적 요인으로 인해 시공간적 편의가 존재하며 실시간 예측정보로 활용하기 전에 모형결과에 대한 편의보정이 요구된다. 본 연구에서는 관측지점 기준으로 편의 보정계수를 산정하는 과정에서 모든 관측소간의 상관성을 거리의 함수로 고려하여 미계측지점의 편의 보정계수를 공간적으로 확장할 수 있는 Bayesian Kriging 기반 MFBC 기법을 개발하였다. 본 연구에서 개발한 방법은 미계측 유역에 대해서도 보정계수를 효과적으로 추정하는 것이 확인되었으며, 비교적 고해상도로 72시간(3일) 정도까지 예측강우 정보를 활용하는 것이 가능할 것으로 판단된다.
As a part of the KIAPS Observation Processing System (KOPS), we have developed the modules of satellite radiance data pre-processing and quality control, which include observation operators to interpolate model state variables into radiances in observation space. AMSU-A (Advanced Microwave Sounding Unit-A) level-1d radiance data have been extracted using the BUFR (Binary Universal Form for the Representation of meteorological data) decoder and a first guess has been calculated with RTTOV (Radiative Transfer for TIROS Operational Vertical Sounder) version 10.2. For initial quality checks, the pixels contaminated by large amounts of cloud liquid water, heavy precipitation, and sea ice have been removed. Channels for assimilation, rejection, or monitoring have been respectively selected for different surface types since the errors from the skin temperature are caused by inaccurate surface emissivity. Correcting the bias caused by errors in the instruments and radiative transfer model is crucial in radiance data pre-processing. We have developed bias correction modules in two steps based on 30-day innovation statistics (observed radiance minus background; O-B). The scan bias correction has been calculated individually for each channel, satellite, and scan position. Then a multiple linear regression of the scan-bias-corrected innovations with several predictors has been employed to correct the airmass bias.
The Mekong River Basin (MRB) is a crucial watershed in Asia, impacting over 60 million people across six developing nations. Accurate satellite-based precipitation products (SPPs) are essential for effective hydrological and watershed management in this region. However, the performance of SPPs has been varied and limited. The APHRODITE product, a unique gauge-based dataset for MRB, is widely used but is only available until 2015. In this study, we present a novel framework for correcting SPPs in the MRB by employing a deep learning approach that combines convolutional neural networks and encoder-decoder architecture to address pixel-by-pixel bias and enhance accuracy. The DLF was applied to four widely used SPPs (TRMM, CMORPH, CHIRPS, and PERSIANN-CDR) in MRB. For the original SPPs, the TRMM product outperformed the other SPPs. Results revealed that the DLF effectively bridged the spatial-temporal gap between the SPPs and the gauge-based dataset (APHRODITE). Among the four corrected products, ADJ-TRMM demonstrated the best performance, followed by ADJ-CDR, ADJ-CHIRPS, and ADJ-CMORPH. The DLF offered a robust and adaptable solution for bias correction in the MRB and beyond, capable of detecting intricate patterns and learning from data to make appropriate adjustments. With the discontinuation of the APHRODITE product, DLF represents a promising solution for generating a more current and reliable dataset for MRB research. This research showcased the potential of deep learning-based methods for improving the accuracy of SPPs, particularly in regions like the MRB, where gauge-based datasets are limited or discontinued.
Jung, Sungho;Le, Xuan Hien;Oh, Sungryul;Kim, Jeongyup;Lee, GiHa
한국수자원학회:학술대회논문집
/
한국수자원학회 2020년도 학술발표회
/
pp.166-166
/
2020
Recently, As the frequency of localized heavy rains increases, the use of high-resolution radar data is increasing. The produced radar rainfall has still gaps of spatial and temporal compared to gauge observation rainfall, and in many studies, various statistical techniques are performed for correct rainfall. In this study, the precipitation correction of the S-band Dual Polarization radar in use in the flood forecast was performed using the ConvAE algorithm, one of the Convolutional Neural Network. The ConvAE model was trained based on radar data sets having a 10-min temporal resolution: radar rainfall data, gauge rainfall data for 790minutes(July 2017 in Cheongju flood event). As a result of the validation of corrected radar rainfall were reduced gaps compared to gauge rainfall and the spatial correction was also performed. Therefore, it is judged that the corrected radar rainfall using ConvAE will increase the reliability of the gridded rainfall data used in various physically-based distributed hydrodynamic models.
대부분의 기후변화 연구에서 Global Circulation Model (GCM)을 수문 모형에 입력하여 수자원 영향 분석을 실시해오고 있다. 국외를 중심으로 기존 GCM보다 해상도가 높은 Regional Climate Model(RCM)을 이용한 분석이 일부 시행되고 있으나, 국내에서는 자료에 가용 여부 및 적용성의 검토가 아직 미비한 실정이다. 이러한 관점에서 본 연구에서는 27 km의 해상도를 갖는 기상청 RegCM3 RCM에서 도출된 기후변화 SRES 시나리오 자료에 대한 적합성을 평가 하기 위해서 국내 주요지점에 근접한 격자자료를 RCM으로부터 추출하였다. 이에 대한 수문학적 통계 특성치 분석, Wavelet Transform 분석, EOF 분석 등을 실시하여 실측 강수자료와 비교 검토하였다. RegCM3로부터 유도된 기후변화 시나리오는 수문학적 저빈도 특성을 비교적 잘 모의하는 것으로 나타났으며, 이에 대한 시공간적 특성 또한 실측자료와 대체적으로 유사한 거동을 보여주었다. 그러나 일부 시공간적으로 왜곡되어 발생하는 지역을 발견할 수 있었으며, 또한 RCM으로부터 유도된 기상자료는 실측치에 비해 상대적으로 자료의 변동성(분산)이 약하게 나타나는 경향이 있었다. 이러한 관점에서 이들 자료를 수자원분야에 활용하기 위해서는 실측치를 바탕으로 이들 편의에 대한 보정(bias correction)이 고려되어야 할 것으로 사료된다.
The United States has been known as the world's major producer of crops such as wheat, corn, and soybeans. Therefore, using meteorological long-term forecast data to project reliable crop yields in the United States is important for planning domestic food policies. The current study is part of an effort to improve the seasonal predictability of regional-scale precipitation across the United States for estimating crop production in the country. For the purpose, a dynamic downscaling method using Weather Research and Forecasting (WRF) model is utilized. The WRF simulation covers the crop-growing period (March to October) during 2000-2020. The initial and lateral boundary conditions of WRF are derived from the Pusan National University Coupled General Circulation Model (PNU CGCM), a participant model of Asia-Pacific Economic Cooperation Climate Center (APCC) Long-Term Multi-Model Ensemble Prediction System. For bias correction of downscaled daily precipitation, empirical quantile mapping (EQM) is applied. The downscaled data set without and with correction are called WRF_UC and WRF_C, respectively. In terms of mean precipitation, the EQM effectively reduces the wet biases over most of the United States and improves the spatial correlation coefficient with observation. The daily precipitation of WRF_C shows the better performance in terms of frequency and extreme precipitation intensity compared to WRF_UC. In addition, WRF_C shows a more reasonable performance in predicting drought frequency according to intensity than WRF_UC.
수자원의 수요 증가와 ENSO (El Ni$\tilde{n}$o/La Ni$\tilde{n}$a Southern Oscillation) 등의 기후변화 현상으로 인한 수자원 공급의 불안정 요소가 제기됨에 따라, 수자원 관리 계획 수립 시 장/단기강우 모의의 중요성이 강조되고 있다. 본 연구에서는 미국 플로리다 템파 지역의 두 개 유역을 대상으로 1986년부터 2008년까지의 MM5 지역기후모델을 이용한 강우모의 결과를 시험지역의 33개 관측자료와 CDF-mapping 기법을 이용하여 통계적으로 보정하였으며 그 결과를 바탕으로 ENSO 패턴에 따른 모델의 성능을 평가하였다. 보정된 MM5일 강우 모의결과는 대체적으로 각 관측소의 월 평균 강우량 (ME: 1.0mm)을 잘 모의하는 것으로 나타났다. 블락-크리깅 기법을 이용하여 추정된 유역 평균 일/월 강우량 또한 관측치를 잘 재현하였다(일 강우 ME: 0.8mm, 월 강우 ME: 7.1mm). 한편, ONI (Oceanic Ni$\tilde{n}$o index)를 이용하여 구분한 ENSO 패턴에 따른 강우 모의치를 분석한 결과, 월별 엘리뇨/라니냐 해에 대한 유역 단위의 강우량 모의 성능이 상이한 것으로 나타났다. 이 원인으로 한정된 모수화 적용 및 모델 경계자료 오차 등을 제시하고 이에 대한 보정 방법개선 등의 추가 연구의 필요성을 지적하였다. 본 연구는 ENSO 패턴을 고려한 월별 기후모델 결과를 활용함에 있어 유의점을 제시하였기에, 우기와 건기에 대한 수자원 관리를 위한 적용 등에 유용하게 활용될 것으로 기대된다.
최근 수공시설물의 설계규모를 넘어서는 극한 강우사상이 발생하여 홍수방어를 위하여 구축된 수리구조물이 파괴 되는 등 많은 홍수피해가 발생하고 있다. 따라서 극한 강우사상의 시공간적 발생 특성을 파악하고 미래의 기후변화하에서 극한강우사상이 어떻게 변화하고 설계수명기간(Design period)동안 분포 특성이 어떻게 변화할지를 이해하는 것은 매우 중요하다. 이에 본 논문에서는 미래의 기후변화가 극한 강우에 어떠한 영향을 미치는지를 평가하기 위해 기후변화 시나리오를 이용하여 미래의 극한강우의 특성 분석과 I-D-F 분석을 실시하였다. 본 연구에서는 SRES B2 온난화가스 시나리오와 YONU CGCM 를 이용하여 2030s(2031-2050)를 모의하였으며 통계학적 축소기법을 적용하여 우리나라에 위치한 기상청 산하 관측소별로 일 기상자료를 구축하였다. 또한, 이를 과거 관측 자료와 비교하여 Quantile Mapping 방법으로 편이보정을 실시하였고, 구형펄스(Modified Bartlett Lewis Rectangular Pulse, MBLRP) 모형(Onof과 Wheater, 1993; Onof 2000)과 분해기법(adjust method)을 적용하여 일 강우 시계열자료를 시 강우 시계열 자료로 변환하였으며 지속기간별 빈도별 강우량을 산정하여 I-D-F 곡선을 작성하였다. 본 논문에서는 66개 관측소 중에서 서울, 대구, 전주, 광주 지점의 결과만을 수록하였으며 그 결과 거의 모든 지점에서 현재와 비교하였을 때 지속기간이 길어질수록 강우강도가 증가함을 확인할 수 있었다.
The main objective of this study was to evaluate Representative Concentration Pathways (RCP) scenarios-based flood risk at a Si-Gun level. A bias correction using a quantile mapping method with the Generalized Extreme Value (GEV) distribution was performed to correct future precipitation data provided by the Korea Meteorological Administration (KMA). A series of proxy variables including CN80 (Number of days over 80 mm) and CX3h (Maximum precipitation during 3-hr) etc. were used to carry out flood risk assessment. Indicators were normalized by a Z-score method and weighted by factors estimated by principal component analysis (PCA). Flood risk evaluation was conducted for the four different time periods, i.e. 1990s, 2025s, 2055s, and 2085s, which correspond to 1976~2005, 2011~2040, 2041~2070, and 2071~2100. The average flood risk indices based on RCP4.5 scenario were 0.08, 0.16, 0.22, and 0.13 for the corresponding periods in the order of time, which increased steadily up to 2055s period and decreased. The average indices based on RCP8.5 scenario were 0.08, 0.23, 0.11, and 0.21, which decreased in the 2055s period and then increased again. Considering the average index during entire period of the future, RCP8.5 scenario resulted in greater risk than RCP4.5 scenario.
가뭄감시는 기후변화로 인해 빈번히 발생하는 자연재해를 저감하기 위해 필요한 중요한 요소 중의 하나이다. 한반도 지역의 가뭄감시를 수행하기 위해서는 위성기반 강수량을 관측하는 것이 필요하다. 본 연구에서는 위성기반의 원시위성강우자료와 편의보정한 위성자료를 이용하여 위성기반 강수량의 정확도를 확인하였다. 서로 다른 공간/시간 해상도를 가지는 원시위성자료(TRMM TMPA, GPM IMERG)를 10 km로 재격자화 하고, 일단위로 변환하였다. 최종적으로 원시위성강우의 표준 시간대를 한반도 표준시(GMT+9)로 변환하여 데이터베이스를 구축하였다. 한반도를 대상지역으로 선정하여, 지상관측자료와 검증을 실시하였다. 편의보정 기법은 GRA-IDW 기법을 선정하여 수행하였다. 먼저 원시위성자료를 검증한 결과를 살펴보면, 상관계수는 1998년부터 2017년까지 0.775로 비교적 정확도가 높게 나왔으며, TRMM TMPA, GPM IMERG 각각의 10 km 일강수량 상관계수값은 0.776, 0.753으로 크게 차이 나지 않았다. BIAS값은 원시위성자료 값이 지상관측자료보다 과대추정하는 것으로 나타났다. 편의보정한 위성자료를 검증한 결과를 살펴보면, 상관계수와 RMSE가 편의보정 전보다 개선된 값을 보여주고 있다. 본 연구에서 검증한 위성강우자료는 가뭄감시시스템의 기초자료로 충분히 활용할 수 있으며, 향후 미계측지역의 가뭄관리 의사결정을 위한 격자자료로 활용할 수 있을 것으로 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.