• 제목/요약/키워드: Precipitation bias correction

검색결과 49건 처리시간 0.028초

고해상도 강수량 수치예보에 대한 편의 보정 기법 개발 (Development of bias correction scheme for high resolution precipitation forecast)

  • 오랑치맥 솜야;김지성;김규호;권현한
    • 한국수자원학회논문집
    • /
    • 제51권7호
    • /
    • pp.575-584
    • /
    • 2018
  • 최근 이상기후로 인한 집중호우 발생빈도와 이로 인한 국지적인 홍수 피해가 증가하고 있다. 이러한 점에서 홍수피해 예방측면에서 수치예보 정보 활용이 요구되고 있다. 그러나 수치예보모델은 초기 조건 및 지형적 요인으로 인해 시공간적 편의가 존재하며 실시간 예측정보로 활용하기 전에 모형결과에 대한 편의보정이 요구된다. 본 연구에서는 관측지점 기준으로 편의 보정계수를 산정하는 과정에서 모든 관측소간의 상관성을 거리의 함수로 고려하여 미계측지점의 편의 보정계수를 공간적으로 확장할 수 있는 Bayesian Kriging 기반 MFBC 기법을 개발하였다. 본 연구에서 개발한 방법은 미계측 유역에 대해서도 보정계수를 효과적으로 추정하는 것이 확인되었으며, 비교적 고해상도로 72시간(3일) 정도까지 예측강우 정보를 활용하는 것이 가능할 것으로 판단된다.

KIAPS 관측자료 처리시스템에서의 AMSU-A 위성자료 초기 전처리와 편향보정 모듈 개발 (Development of Pre-Processing and Bias Correction Modules for AMSU-A Satellite Data in the KIAPS Observation Processing System)

  • 이시혜;김주혜;강전호;전형욱
    • 대기
    • /
    • 제23권4호
    • /
    • pp.453-470
    • /
    • 2013
  • As a part of the KIAPS Observation Processing System (KOPS), we have developed the modules of satellite radiance data pre-processing and quality control, which include observation operators to interpolate model state variables into radiances in observation space. AMSU-A (Advanced Microwave Sounding Unit-A) level-1d radiance data have been extracted using the BUFR (Binary Universal Form for the Representation of meteorological data) decoder and a first guess has been calculated with RTTOV (Radiative Transfer for TIROS Operational Vertical Sounder) version 10.2. For initial quality checks, the pixels contaminated by large amounts of cloud liquid water, heavy precipitation, and sea ice have been removed. Channels for assimilation, rejection, or monitoring have been respectively selected for different surface types since the errors from the skin temperature are caused by inaccurate surface emissivity. Correcting the bias caused by errors in the instruments and radiative transfer model is crucial in radiance data pre-processing. We have developed bias correction modules in two steps based on 30-day innovation statistics (observed radiance minus background; O-B). The scan bias correction has been calculated individually for each channel, satellite, and scan position. Then a multiple linear regression of the scan-bias-corrected innovations with several predictors has been employed to correct the airmass bias.

A novel framework for correcting satellite-based precipitation products in Mekong river basin with discontinuous observed data

  • Xuan-Hien Le;Giang V. Nguyen;Sungho Jung;Giha Lee
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.173-173
    • /
    • 2023
  • The Mekong River Basin (MRB) is a crucial watershed in Asia, impacting over 60 million people across six developing nations. Accurate satellite-based precipitation products (SPPs) are essential for effective hydrological and watershed management in this region. However, the performance of SPPs has been varied and limited. The APHRODITE product, a unique gauge-based dataset for MRB, is widely used but is only available until 2015. In this study, we present a novel framework for correcting SPPs in the MRB by employing a deep learning approach that combines convolutional neural networks and encoder-decoder architecture to address pixel-by-pixel bias and enhance accuracy. The DLF was applied to four widely used SPPs (TRMM, CMORPH, CHIRPS, and PERSIANN-CDR) in MRB. For the original SPPs, the TRMM product outperformed the other SPPs. Results revealed that the DLF effectively bridged the spatial-temporal gap between the SPPs and the gauge-based dataset (APHRODITE). Among the four corrected products, ADJ-TRMM demonstrated the best performance, followed by ADJ-CDR, ADJ-CHIRPS, and ADJ-CMORPH. The DLF offered a robust and adaptable solution for bias correction in the MRB and beyond, capable of detecting intricate patterns and learning from data to make appropriate adjustments. With the discontinuation of the APHRODITE product, DLF represents a promising solution for generating a more current and reliable dataset for MRB research. This research showcased the potential of deep learning-based methods for improving the accuracy of SPPs, particularly in regions like the MRB, where gauge-based datasets are limited or discontinued.

  • PDF

Bias-correction of Dual Polarization Radar rainfall using Convolutional Autoencoder

  • Jung, Sungho;Le, Xuan Hien;Oh, Sungryul;Kim, Jeongyup;Lee, GiHa
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.166-166
    • /
    • 2020
  • Recently, As the frequency of localized heavy rains increases, the use of high-resolution radar data is increasing. The produced radar rainfall has still gaps of spatial and temporal compared to gauge observation rainfall, and in many studies, various statistical techniques are performed for correct rainfall. In this study, the precipitation correction of the S-band Dual Polarization radar in use in the flood forecast was performed using the ConvAE algorithm, one of the Convolutional Neural Network. The ConvAE model was trained based on radar data sets having a 10-min temporal resolution: radar rainfall data, gauge rainfall data for 790minutes(July 2017 in Cheongju flood event). As a result of the validation of corrected radar rainfall were reduced gaps compared to gauge rainfall and the spatial correction was also performed. Therefore, it is judged that the corrected radar rainfall using ConvAE will increase the reliability of the gridded rainfall data used in various physically-based distributed hydrodynamic models.

  • PDF

기후변화에 따른 수자원 영향 평가를 위한 Regional Climate Model 강수 계열의 특성 분석 (Analysis of Precipitation Characteristics of Regional Climate Model for Climate Change Impacts on Water Resources)

  • 권현한;김병식;김보경
    • 대한토목학회논문집
    • /
    • 제28권5B호
    • /
    • pp.525-533
    • /
    • 2008
  • 대부분의 기후변화 연구에서 Global Circulation Model (GCM)을 수문 모형에 입력하여 수자원 영향 분석을 실시해오고 있다. 국외를 중심으로 기존 GCM보다 해상도가 높은 Regional Climate Model(RCM)을 이용한 분석이 일부 시행되고 있으나, 국내에서는 자료에 가용 여부 및 적용성의 검토가 아직 미비한 실정이다. 이러한 관점에서 본 연구에서는 27 km의 해상도를 갖는 기상청 RegCM3 RCM에서 도출된 기후변화 SRES 시나리오 자료에 대한 적합성을 평가 하기 위해서 국내 주요지점에 근접한 격자자료를 RCM으로부터 추출하였다. 이에 대한 수문학적 통계 특성치 분석, Wavelet Transform 분석, EOF 분석 등을 실시하여 실측 강수자료와 비교 검토하였다. RegCM3로부터 유도된 기후변화 시나리오는 수문학적 저빈도 특성을 비교적 잘 모의하는 것으로 나타났으며, 이에 대한 시공간적 특성 또한 실측자료와 대체적으로 유사한 거동을 보여주었다. 그러나 일부 시공간적으로 왜곡되어 발생하는 지역을 발견할 수 있었으며, 또한 RCM으로부터 유도된 기상자료는 실측치에 비해 상대적으로 자료의 변동성(분산)이 약하게 나타나는 경향이 있었다. 이러한 관점에서 이들 자료를 수자원분야에 활용하기 위해서는 실측치를 바탕으로 이들 편의에 대한 보정(bias correction)이 고려되어야 할 것으로 사료된다.

경험적 분위사상법을 이용한 지역기후모형 기반 미국 강수 및 가뭄의 계절 예측 성능 개선 (Improvement in Seasonal Prediction of Precipitation and Drought over the United States Based on Regional Climate Model Using Empirical Quantile Mapping)

  • 송찬영;김소희;안중배
    • 대기
    • /
    • 제31권5호
    • /
    • pp.637-656
    • /
    • 2021
  • The United States has been known as the world's major producer of crops such as wheat, corn, and soybeans. Therefore, using meteorological long-term forecast data to project reliable crop yields in the United States is important for planning domestic food policies. The current study is part of an effort to improve the seasonal predictability of regional-scale precipitation across the United States for estimating crop production in the country. For the purpose, a dynamic downscaling method using Weather Research and Forecasting (WRF) model is utilized. The WRF simulation covers the crop-growing period (March to October) during 2000-2020. The initial and lateral boundary conditions of WRF are derived from the Pusan National University Coupled General Circulation Model (PNU CGCM), a participant model of Asia-Pacific Economic Cooperation Climate Center (APCC) Long-Term Multi-Model Ensemble Prediction System. For bias correction of downscaled daily precipitation, empirical quantile mapping (EQM) is applied. The downscaled data set without and with correction are called WRF_UC and WRF_C, respectively. In terms of mean precipitation, the EQM effectively reduces the wet biases over most of the United States and improves the spatial correlation coefficient with observation. The daily precipitation of WRF_C shows the better performance in terms of frequency and extreme precipitation intensity compared to WRF_UC. In addition, WRF_C shows a more reasonable performance in predicting drought frequency according to intensity than WRF_UC.

ENSO 패턴에 대한 MM5 강수 모의 결과의 유역단위 성능 평가: 플로리다 템파 지역을 중심으로 (Combining Bias-correction on Regional Climate Simulations and ENSO Signal for Water Management: Case Study for Tampa Bay, Florida, U.S.)

  • 황세운;호세 헤르난데즈
    • 한국농림기상학회지
    • /
    • 제14권4호
    • /
    • pp.143-154
    • /
    • 2012
  • 수자원의 수요 증가와 ENSO (El Ni$\tilde{n}$o/La Ni$\tilde{n}$a Southern Oscillation) 등의 기후변화 현상으로 인한 수자원 공급의 불안정 요소가 제기됨에 따라, 수자원 관리 계획 수립 시 장/단기강우 모의의 중요성이 강조되고 있다. 본 연구에서는 미국 플로리다 템파 지역의 두 개 유역을 대상으로 1986년부터 2008년까지의 MM5 지역기후모델을 이용한 강우모의 결과를 시험지역의 33개 관측자료와 CDF-mapping 기법을 이용하여 통계적으로 보정하였으며 그 결과를 바탕으로 ENSO 패턴에 따른 모델의 성능을 평가하였다. 보정된 MM5일 강우 모의결과는 대체적으로 각 관측소의 월 평균 강우량 (ME: 1.0mm)을 잘 모의하는 것으로 나타났다. 블락-크리깅 기법을 이용하여 추정된 유역 평균 일/월 강우량 또한 관측치를 잘 재현하였다(일 강우 ME: 0.8mm, 월 강우 ME: 7.1mm). 한편, ONI (Oceanic Ni$\tilde{n}$o index)를 이용하여 구분한 ENSO 패턴에 따른 강우 모의치를 분석한 결과, 월별 엘리뇨/라니냐 해에 대한 유역 단위의 강우량 모의 성능이 상이한 것으로 나타났다. 이 원인으로 한정된 모수화 적용 및 모델 경계자료 오차 등을 제시하고 이에 대한 보정 방법개선 등의 추가 연구의 필요성을 지적하였다. 본 연구는 ENSO 패턴을 고려한 월별 기후모델 결과를 활용함에 있어 유의점을 제시하였기에, 우기와 건기에 대한 수자원 관리를 위한 적용 등에 유용하게 활용될 것으로 기대된다.

기후변화가 극한강우와 I-D-F 분석에 미치는 영향 평가 (Impact Assessment of Climate Change on Extreme Rainfall and I-D-F Analysis)

  • 김병식;김보경;경민수;김형수
    • 한국수자원학회논문집
    • /
    • 제41권4호
    • /
    • pp.379-394
    • /
    • 2008
  • 최근 수공시설물의 설계규모를 넘어서는 극한 강우사상이 발생하여 홍수방어를 위하여 구축된 수리구조물이 파괴 되는 등 많은 홍수피해가 발생하고 있다. 따라서 극한 강우사상의 시공간적 발생 특성을 파악하고 미래의 기후변화하에서 극한강우사상이 어떻게 변화하고 설계수명기간(Design period)동안 분포 특성이 어떻게 변화할지를 이해하는 것은 매우 중요하다. 이에 본 논문에서는 미래의 기후변화가 극한 강우에 어떠한 영향을 미치는지를 평가하기 위해 기후변화 시나리오를 이용하여 미래의 극한강우의 특성 분석과 I-D-F 분석을 실시하였다. 본 연구에서는 SRES B2 온난화가스 시나리오와 YONU CGCM 를 이용하여 2030s(2031-2050)를 모의하였으며 통계학적 축소기법을 적용하여 우리나라에 위치한 기상청 산하 관측소별로 일 기상자료를 구축하였다. 또한, 이를 과거 관측 자료와 비교하여 Quantile Mapping 방법으로 편이보정을 실시하였고, 구형펄스(Modified Bartlett Lewis Rectangular Pulse, MBLRP) 모형(Onof과 Wheater, 1993; Onof 2000)과 분해기법(adjust method)을 적용하여 일 강우 시계열자료를 시 강우 시계열 자료로 변환하였으며 지속기간별 빈도별 강우량을 산정하여 I-D-F 곡선을 작성하였다. 본 논문에서는 66개 관측소 중에서 서울, 대구, 전주, 광주 지점의 결과만을 수록하였으며 그 결과 거의 모든 지점에서 현재와 비교하였을 때 지속기간이 길어질수록 강우강도가 증가함을 확인할 수 있었다.

분위사상법을 적용한 RCP 시나리오 기반 시군별 홍수 위험도 평가 (Flood Risk Assessment Based on Bias-Corrected RCP Scenarios with Quantile Mapping at a Si-Gun Level)

  • 박지훈;강문성;송인홍
    • 한국농공학회논문집
    • /
    • 제55권4호
    • /
    • pp.73-82
    • /
    • 2013
  • The main objective of this study was to evaluate Representative Concentration Pathways (RCP) scenarios-based flood risk at a Si-Gun level. A bias correction using a quantile mapping method with the Generalized Extreme Value (GEV) distribution was performed to correct future precipitation data provided by the Korea Meteorological Administration (KMA). A series of proxy variables including CN80 (Number of days over 80 mm) and CX3h (Maximum precipitation during 3-hr) etc. were used to carry out flood risk assessment. Indicators were normalized by a Z-score method and weighted by factors estimated by principal component analysis (PCA). Flood risk evaluation was conducted for the four different time periods, i.e. 1990s, 2025s, 2055s, and 2085s, which correspond to 1976~2005, 2011~2040, 2041~2070, and 2071~2100. The average flood risk indices based on RCP4.5 scenario were 0.08, 0.16, 0.22, and 0.13 for the corresponding periods in the order of time, which increased steadily up to 2055s period and decreased. The average indices based on RCP8.5 scenario were 0.08, 0.23, 0.11, and 0.21, which decreased in the 2055s period and then increased again. Considering the average index during entire period of the future, RCP8.5 scenario resulted in greater risk than RCP4.5 scenario.

한반도지역 가뭄 모니터링 활용을 위한 위성강우 편의보정 (Evolution of Bias-corrected Satellite Rainfall Estimation for Drought Monitoring System in South Korea)

  • 박지훈;정임국;박경원
    • 대한원격탐사학회지
    • /
    • 제34권6_1호
    • /
    • pp.997-1007
    • /
    • 2018
  • 가뭄감시는 기후변화로 인해 빈번히 발생하는 자연재해를 저감하기 위해 필요한 중요한 요소 중의 하나이다. 한반도 지역의 가뭄감시를 수행하기 위해서는 위성기반 강수량을 관측하는 것이 필요하다. 본 연구에서는 위성기반의 원시위성강우자료와 편의보정한 위성자료를 이용하여 위성기반 강수량의 정확도를 확인하였다. 서로 다른 공간/시간 해상도를 가지는 원시위성자료(TRMM TMPA, GPM IMERG)를 10 km로 재격자화 하고, 일단위로 변환하였다. 최종적으로 원시위성강우의 표준 시간대를 한반도 표준시(GMT+9)로 변환하여 데이터베이스를 구축하였다. 한반도를 대상지역으로 선정하여, 지상관측자료와 검증을 실시하였다. 편의보정 기법은 GRA-IDW 기법을 선정하여 수행하였다. 먼저 원시위성자료를 검증한 결과를 살펴보면, 상관계수는 1998년부터 2017년까지 0.775로 비교적 정확도가 높게 나왔으며, TRMM TMPA, GPM IMERG 각각의 10 km 일강수량 상관계수값은 0.776, 0.753으로 크게 차이 나지 않았다. BIAS값은 원시위성자료 값이 지상관측자료보다 과대추정하는 것으로 나타났다. 편의보정한 위성자료를 검증한 결과를 살펴보면, 상관계수와 RMSE가 편의보정 전보다 개선된 값을 보여주고 있다. 본 연구에서 검증한 위성강우자료는 가뭄감시시스템의 기초자료로 충분히 활용할 수 있으며, 향후 미계측지역의 가뭄관리 의사결정을 위한 격자자료로 활용할 수 있을 것으로 판단된다.