• Title/Summary/Keyword: Precipitation acidity

Search Result 96, Processing Time 0.022 seconds

Study on New Process of Zero Discharge of Cyanide Wastewater

  • Qiu, Ting-Sheng;Tang, Guan-Zhong;Hao, Zhi-Wei;Cheng, Xian-Xiong
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.135-139
    • /
    • 2001
  • According to the requirement of cyanide precipitation-purification technology, adopt the acidized sulfate to precipitate cyanide. Studying the influence of acidity and the dosage of sulfate on precipitation rate of impurity ion in cyanide wastewater, and, on the basis of synthetic precipitation experiments, we obtain principle process of cyanide precipitation-purification to technology.

  • PDF

A Study on the Comparison of Chemical Components in Rainwater at Coastal and Metropolitan areas (해안지역과 도시지역 강수의 화학적 성상에 관한 연구)

  • 강공언;강병욱;김희강
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.8 no.3
    • /
    • pp.191-197
    • /
    • 1992
  • In order to investigate the chemical components of acid precipitation at Kangwha near the Yellow Sea and Seoul in Korea, the precipitation samples were collected by wetonly precipitation sampler from February 1991 to January 1992, and pH, electric conductivity(E. C.) and major water-soluble ionic components were analyzed. Strong negative linear correlations were observed between the rainfall amount and the sum of major ionic components in $\mu eq/\ell$ at two sites. The sum of major ionic components also correlated negatively with rain intensity. The analytical results of precipitation samples at two sites were compared each other. Average values of volume-weighted pH were found to be 5.21 at Kangwha and 5.09 at Seoul. The cationic abundance($\mu eq/\ell$) in rainwater showed the general trend $NH_4^+ > Na^+ > Ca^{2+} > Mg^{2-+} > H^+ > K^+$ at Kangwah and $NH_4^+ > Ca^{2+} > Na^+ > H^+ > Mg^{2+} > K^+$ at Seoul. The anionic abundance showed the general trend $SO_4^{2-} > Cl^- > NO_3^-$ at Kangwha and $SO_4^{2-} > NO_3^- > Cl^-$ at Seoul. The concentrations of seasalt such as $Na^+ and Cl^-$ were higher at Kangwha than Seoul. The concentrations of $nss-SO_4^{2-}, nss-Cl^- and NO_3^-$ which are acid composition were higher at Seoul(96.3 $\mu eq/\ell$) than Kangwha(69.0 $\mu eq/\ell$). The contribution of seasalt to the composition of precipitation were higher at Kangwha(34.1%) than Seoul(15.7%). Ammonia and calcium species in rainwater at Kangwha and Seoul are interpreted to have 91% of neutralizing capacity of the original sulfuric and nitric acids. Provided that the precipitation acidity originates primarily from sulfate and nitrate, sulfate was found to contribute about 73-75% of the free precipitation acidity.

  • PDF

Studies on Pollution Characteristics and Sources of Precipitation in Jeiu Island

  • Kang, Chang-Hee;Kim, Won-Hyung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.E4
    • /
    • pp.191-201
    • /
    • 2002
  • The pH, electric conductivity. and the major ionic components were analyzed for the precipitation samples collected at 1100 Site of Mt. Halla and Jeju city. The quality of analytical data was verified by the comparison of ion balances, conductivities and acid fractions, all of which correlation coefficients were over 0.952. The ionic strengths lower than 10$^{-4}$ M were found in 57 and 28% at 1100 Site and Jeju city respectively. The precipitation in Jeju city was influenced more by the oceanic effect than those in 1100 Site. The acidification of precipitation was caused mostly by S $O_4$$^{2-}$and N $O_3$$^{[-10]}$ in both areas, and the organic acids have contributed to the acidity with only 7~8%. The neutralization factors by N $H_3$ were about 44 and 47% at the 1100 site and the Jeju city, respectively, whereas those by CaC $O_3$were 21 and 24%, and the free acidity were about 38 and 28% at two sites. From the investigation of seawater and soil enrichment factors, the S $O_4$$^{2-}$, N $O_3$$^{[-10]}$ and N $E_4$$^{+}$ were immigrated by other sources rather than from the seawater or soil origins. but not in the case of $Mg^{2+}$, C $l^{[-10]}$ , N $a^{+}$, and $K^{+}$. Factor analysis has shown that the precipitation at the 1100 site had been influenced mostly by anthropogenic sources, followed by soil and sea-water sources. On the other hand, the precipitation at the Jeju city was mainly influenced by oceanic sources, followed by anthropogenic and soil sources.urces.

Study on the Deacidification of Wine Made from Campbell Early (Campbell Early를 이용하여 만든 포도주의 산도 감소에 관한 연구)

  • Lee, Ju-Kyung;Kim, Jae-Sik
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.408-413
    • /
    • 2006
  • The domestic grape cultivar Campbell Early has high levels of both malic acid and tartaric acid. Therefore, the processing of wine made from Campbell Early must include decreasing the acidity. Six different methods were tested for reducing excess acidity: traditional vinification, precipitation, cold stabilization, malolactic fermentation (MLF), carbonic maceration and cold fermentation. Wines had higher pH values and lower total acidity than control after all the processing methods except cold stabilization. With regard to the measured organic acid content, the control contained 2,927 ppm tartaric acid, 2,421 ppm malic acid and 486 ppm lactic acid, but the precipitated wine contained 2,346 ppm tartaric acid. The MLF wine contained 828 ppm malic acid and 2,394 ppm lactic acid. Wine after carbonic maceration contained 792 ppm malic acid and cold fermentation decreased the organic acid contents in general. Sensory analysis showed that the carbonic maceration and precipitation methods resulted in wines that were excellent in color, flavor, taste and overall preference.

Yearly Changes of Precipitation Component in the Iksan Area (익산지역 강수성분의 연차적 변이)

  • Lee, Kyeong-Bo;Lee, Deog-Bae;Lee, Sang-Bok;Kim, Jae-Duk;Park, Chan-Won
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.1
    • /
    • pp.1-6
    • /
    • 2006
  • This study was carried out to investigate yearly change in the precipitation component and the source strength to acid precipitation at Iksan area from 1997 to 2003. The average ratio of acid precipitation was 70.0% in 1997, 56.3% in 1998 and 36.4% in 2003. On the other hand, it ranged from 6.9 to 19.2% when precipitation was less from 1999 to 2002. The average annual wet depositions of major ionic component in precipitation were calculated by multiplying equivalent concentration by precipitation. The order of major anion component in precipitation was ${SO_4}^{2-}>Cl^->{NO_3}^-$. On the other hand, the concentration of cation component were ${Ca_2}^+>Na^+>{NH_4}^+>{Mg_2}^+>K^+$ in order. The negative correlation was shown between pH and ionic component in precipitation except for ${Ca_2}^+\;and\;Na^+$. The correlation coefficient between pH and ${SO_4}^{2-}$ was highly significant as -0.508, which suggests that ${SO_4}^{2-}$ played important role in increasing the acidity of precipitation. Also the anions such as ${SO_4}^{2-}\;and\;{NO_3}^-$ were highly significant with cations such as ${Ca_2}^+,\;{Mg_2}^+,\;K^+,\;{NH_4}^+\;and\;Na^+$. As a result though pH was enable to use the acidity index of precipitation in somewhere, evaluating only pH in precipitation was insufficient as the index to establish corresponding strategy for acid rain.

Correlations between the ions in the precipitation at Chongwon, Chungbuk (충북 청원군의 강수중의 이온들간의 상관관계)

  • 박용남;송기형
    • Journal of Environmental Science International
    • /
    • v.2 no.4
    • /
    • pp.337-346
    • /
    • 1993
  • The amount of inorganic ions such as $Na^+$, $K^+$, $Ca^{2+}$, $Mg^{2+}$, $NH_4^+$, $Cl^-$, $NO_3^-$, and $SO_4^{2-}$ in the precipitation at hongwon area were analyzed during the period of February 1991 - June 1993. Ammonium ion was analyzed using Messier and indophenol methods. Cations were determined by atomic absorption spectroscopy, and ion chromatography was used for anions. For the entire period of study, there was no particular ion which has significant]y high correlation coefficient with hydrogen ion. The correlation between $NO_3^-$, and $SO_4^{2-}$ was 0.6, which suggests that these ions may be from the same source. Most cations have high correlation with each other. In the seasonal analysis, the nitrate and sulfate ions have high correlations with the acidity in the fall and winter. The rain waters of Taeahn area showed usually high concentrations of the ions, even though the pH was much higher than that of Chongwon area. It is considered that the ions came as neutral salt in Taeahn, while $NO_x$ and $SO_x$ contributes largely to the acidity of rains in Chongwon.

  • PDF

Chemical characteristics of wet precipitation in urban and mountainous sites of Jeju Island

  • Bu, Jun-Oh;Song, Jung-Min;Park, Sook-Young;Kang, Hee-Ju;Kang, Chang-Hee
    • Analytical Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.33-41
    • /
    • 2020
  • Wet precipitation samples were collected in Jeju City and Mt. Halla-1100 site (a site at an altitude of 1100 m on Mt. Halla) during 2011-2013, and their major ionic species were analyzed to examine the chemical composition and characteristics. A comparison of ion balance, electric conductivity, and acid fraction of precipitation revealed correlation coefficients in the range of r = 0.950~0.991, thereby implying the high quality of analytical data. Volume-weighted mean pH and electric conductivity corresponded to 4.86 and 25.5 µS/cm for Jeju City, and 4.98 and 15.1 µS/cm for Mt. Halla-1100 site, respectively. Ionic strengths of the wet precipitation in Jeju City and Mt. Halla-1100 site corresponded 0.3 ± 0.5 and 0.2 ± 0.2 mM, respectively, thereby indicating that more than 30 % of total precipitation was within a pure precipitation criteria. The precipitation with a pH range of 4.5 - 5.0 corresponded to 40.8 % in Jeju City, while the precipitation with a pH range of 5.0 - 5.5 corresponded to 56.9 % in Mt. Halla-1100 site, thereby indicating slightly more weak acidity than that in Jeju city. The volume-weighted mean concentration (µeq/L) of ionic species was in the order of Na+ > Cl- > nss-SO42- > NO3- > Mg2+ > NH4+ > H+ > nss-Ca2+ > PO43- > K+ > CH3COO- > HCOO- > NO2- > F- > HCO3- > CH3SO3- at Jeju City area, while it corresponded to Na+ > Cl- > nss-SO42- > NO3- > NH4+ > H+ > Mg2+ > nss-Ca2+ > PO43- > CH3COO- > K+ > HCOO- > NO2- > F- > HCO3- > CH3SO3- at Mt. Halla-1100 site. The compositions of sea salts (Na+, Cl-, Mg2+) and secondary pollutants (NH4+, nss-SO42-, NO3-) corresponded to 66.1 % and 21.8 %, respectively, in Jeju City and, 49.9 % and 31.5 %, respectively, in Mt. Halla-1100 site. The acidity contributions in Jeju City and Mt. Halla-1100 site by inorganic acids, i.e., sulfuric acid and nitric acid, corresponded to 93.9 % and 91.4 %, respectively, and the acidity contributions by organic acids corresponded to 6.1 % and 8.6 %, respectively. The neutralization factors in Jeju City and Mt. Halla1100 site by ammonia corresponded to 29.8 % and 30.1 %, respectively, whereas the neutralization factors by calcium carbonate corresponded to 20.5 % and 25.2 %, respectively. From the clustered back trajectory analysis, the concentrations of most ionic components were higher when the airflow pathways were moved from the continent to Jeju area.

Chemical Composition of Rainwater in Chonju-city, Korea (전주시에서 채수된 강수의 화학적 조성)

  • 나춘기;정재일
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.5
    • /
    • pp.371-381
    • /
    • 1997
  • Precipitation sampls were collected in Chonju-city during October 1994 to September 1995 and were analysed for major ions (N $a^{+}$, $K^{+}$, $Ca^{2+}$, $Mg^{2+}$, C $l^{[-10]}$ , NO/$_3$, S $O_4$$^{2-}$) and trace metals (Al, Cd, Ni, Pb, Sr, Zn) in addition to pH, in order to understand the chemical characteristics of acid rain and to estimate the origin of the determined ions. Most rain showed a neutral or alkaline character, and only 35% had a pH lower than 5.6. S $O_4$$^{2-}$ and N $O_3$$^{[-10]}$ are identified as the primary contributors to precipitation acidity in this region. Neutralization of precipitation acidity occurs as a result of the dissolution of alkaline compounds containing $Ca^{2+}$, $Mg^{2+}$ and $K^{+}$. S $O_4$$^{2-}$ and N $O_3$$^{[-10]}$ precipitation concentrations exhibit a seasonal pattern in which higher concentrations are observed during spring months and lower concentrations during summer months. However, the seasonal behavior of $H^{+}$ concentrations differs from this pattern, in that the highest concentrations occur during autumn months, owing to the different influence of neutralization processes. In all rain, S $O_4$$^{2-}$ concentration exceeded NO/$_3$$^{[-10]}$ concentration. The contribution of maritime sources to the total S $O_4$$^{2-}$ concentration was very low or negligible. For rain strongly affacted by yellow sand, $Ca^{2+}$, $Mg^{2+}$ and $K^{+}$ ions show a sharp increase in concentration, reflecting the increased amount of dust and soil suspended in atmosphere. At the same time, S $O_4$$^{2-}$ and N $O_3$$^{[-10]}$ concentrations are at their highest levels while $H^{+}$ values are not comparably elevated, presumably beacause much of the acidity has been neutralized by alkaline substances. The seasonal variance of trace metal concentrations in rainwater is similar to that of major cations. The annual wet flux of acidic pollutants and trace metals wat calculated to be as follows: N $O_3$$^{[-10]}$ ; 2.32 g/$m^2$, S $O_4$$^{2-}$, 5.34 g/$m^2$, Al; 6.30 mg/$m^2$, Cd; 0.62 mg/$m^2$, Ni; 4.08 mg/$m^2$, Pb: 9.76 mg/$m^2$, Sr; 5.94 mg/$m^2$, Zn; 111 mg/$m^2$./$m^2$.

  • PDF