• Title/Summary/Keyword: Precipitation Hardening

Search Result 131, Processing Time 0.023 seconds

Study on Precipitation and Mechanical Properties of High Strength Invar Alloy (고강도 인바합금의 석출거동과 기계적 특성 연구)

  • Jeong, J.Y.;Lee, K.D.;Ha, T.K.;Jeong, H.T.
    • Transactions of Materials Processing
    • /
    • v.17 no.7
    • /
    • pp.507-510
    • /
    • 2008
  • Effect of V addition on the precipitation behavior and strength of Fe-36Ni based high strength Invar alloy for power transmission wire was investigated. Fe-36Ni Invar alloy plates were fabricated using conventional ingot casting followed by hot rolling. High strength can be obtained through precipitation hardening and strain hardening by cold rolling. Simulation using FactSage$^{(R)}$ revealed that equilibrium phases which can be formed are two kinds of MC-type precipitates, $Mo_{2}C$ and $M_{23}C_6$ carbide. The latter stoichiometric carbide was expected to be formed at relatively lower temperature of $800^{\circ}C$.

Effect of CaO Addition on Age Hardening Behavior of AZ91 Alloy (AZ91 합금의 시효경화 거동에 미치는 CaO 첨가의 영향)

  • Jun, Joong-Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.4
    • /
    • pp.193-198
    • /
    • 2011
  • Effect of CaO addition on age hardening response has been studied by using optical microscopy, scanning electron microscopy and differential thermal analysis in AZ91 and CaO-containing ECO-AZ91 alloys. After solution treatment, the ${\beta}$($Mg_{17}Al_{12}$) phase formed during solidification mostly disappeared in the microstructure in the AZ91 alloy, whereas numerous ${\beta}$ precipitates containing Ca were still observed in the ECO-AZ91 alloy due to its enhanced thermal stability. The ECO-AZ91 alloy showed the delayed peak aging time and higher peak hardness compared with those of the AZ91 alloy. The activation energies for ${\beta}$ precipitation calculated by means of Kissinger method increased from 71.4 to 85.6 kJ/mole by the addition of CaO, which implies that CaO plays a role in reducing ${\beta}$ precipitation rate in the AZ91 alloy.

The investigation of the carbon on irradiation hardening and defect clustering in RPV model alloy using ion irradiation and OKMC simulation

  • Yitao Yang;Jianyang Li;Chonghong Zhang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2071-2078
    • /
    • 2024
  • The precipitation of solutes is a major cause of irradiation hardening and embrittlement limiting the service life of reactor pressure vessel (RPV) steels. Impurities play a significant role in the formation of precipitation in RPV materials. In this study, the effects of carbon on cluster formation and irradiation hardening were investigated in an RPV alloy Fe-1.35Mn-0.75Ni using C and Fe ions irradiation at 290 ℃. Nanoindentation results showed that C ion irradiation led to less hardening below 1.0 dpa, with hardening continuing to increase gradually at higher doses, while it was saturated under Fe ion irradiation. Atom probe tomography revealed a broad size distribution of Ni-Mn clusters under Fe ion irradiation, contrasting a narrower size distribution of small Ni-Mn clusters under C ion irradiation. Further analysis indicated the influence of carbon on the cluster formation, with solute-precipitated defects dominating under C ion irradiation but interstitial clusters dominating under Fe ion irradiation. Simulations suggested that carbon significantly affected solute nucleation, with defect clusters displaying smaller size and higher density as carbon concentration increased. The higher hardening at doses above 1.0 dpa was attributed to a substantial increase in the number density of defect clusters when carbon was present in the matrix.

Precipitation Behavior of Laves Phase in 10%Cr Ferrite System Alloy (10%Cr 페라이트계 합금에서 라베스상의 석출거동에 관한 연구)

  • Kim, I.S.;Kang, C.Y.;Bae, D.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.12 no.1
    • /
    • pp.21-30
    • /
    • 1999
  • The present study were investigated changes of precipitation behaviour of laves phase in ferrite single phase and ferrite-martensite dual phase and precipitation of laves phase under stress. Hardness changes in ferrite phase appeared two hardness peaks by precipitation of initial fine precipitator and laves phase in 3Mo-0.3Si and 3Mo-0.3Si-C specimens, respectively. Hardness changes in martensite phase of 3Mo-0.3Si-C specimen was lower in the initial stage of aging by carbide precipitation and after this, increased by re-hardening due to precipitation of laves phase. In the ferrite phase, laves phase was mainly precipitated, whereas in the martensite phase, carbide was preferentially formed during the initial stage of aging and with increasing aging time, laves phase and carbide were simultaneously precipitated by precipitation of laves phase at around carbide. In the ferrite-martensite interface, laves phase was mainly precipitated and carbide was mainly formed at boundary of lath martensite than grain boundary. Adding the stress in aging, fine precipitator of inital precipitation of laves phase precipitated in (100) of perpendicular to tensile direction and has grown to only followed<010>direction and also, volume fraction of laves phase increased. Consequently, the stress added was accelerated initial precipitation of laves phase.

  • PDF

Study on the Effect of Magnetized Water in the Precipitation Reaction of Salts and in the Hydration Hardening Speed of Gympsum Plaster (자화수가 염류의 침전반응 및 석고의 가수 경화속도에 미치는 영향에 관한 연구)

  • Jeon, Sang-Il;Kim, Dong-Ryul;Lee, Sung-Hyun;Kim, Dong-Suk;Lee, Suk-Keun
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.1
    • /
    • pp.7-13
    • /
    • 2002
  • Although it has been known that the magnetized water shows different physicochemical properties, the exact nature of the magnetized water is not clearly elucidated yet. We have explored the effect of magnetized water in the precipitation of salts, i.e., $BaSO_4,\;BaCO_3,\;CaCO_3$, and in the hydration hardening of gypsum plaster. The amount of salt precipitation was measured by salt filter assay in water bath, $25^{\circ}C$ and also the hydration hardening speed of gypsum plaster was measured by the Gillmore needle method at room temperature. When the salt ions were interacted with each other in 0.1 M concentration, the precipitation reactions of $BaSO_4,\;BaCO_3$, and $CaCO_3$ increased more in the magnetized water, about 3.6%, 3.8%, and 4.4%, respectively, than in the control water. And the hydration hardening speed of gypsum plaster increased more in the magnetized water than in the control water. These data suggest that the magnetized water, which is supposed to be organized by forming numerous nano/micro clusters, induces the increase of salt precipitation and also accelerates the hydration hardening speed of gypsum plaster.

Precipitation Behavior and Mechanical Properties of High Strength Invar Alloy (고강도 인바합금의 석출거동 및 기계적 특성)

  • Jung, J.Y.;Lee, K.D.;Ha, T.K.;Jeong, H.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.547-550
    • /
    • 2008
  • Precipitation characteristics of the Fe-36Ni based high strength Invar alloy for power transmission wire was investigated in this study. High strength can be obtained in this alloy through precipitation hardening and strain hardening by cold working. $FactSage{(R)}$ in this study, revealing that equilibrium phases which can be formed are two kind of MC-type precipitates and MoC carbide. The latter stoichiometric carbide was expected to be formed at relatively lower temperature $770^{\circ}C$. High strength above 1000MPa and 40% of elongation were obtained at room temperature in both cases.

  • PDF

Effect of Fine Copper Sulfides on the High Cycle Fatigue Properties of Bake Hardening Steels for Automotive (자동차용 소부경화형(BH) 강의 고주기 피로 특성에 미치는 미세 황화물의 영향)

  • Kang, Seonggeu;Kim, Jinyong;Choi, Ildong;Lee, Sungbok;Hong, Moonhi
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.3
    • /
    • pp.203-210
    • /
    • 2011
  • Bake hardening steels have to resist strain aging to prevent the yield strength increment and stretcher strain during press process and to enhance the bake hardenability during baking process after painting. The bake hardening steels need to control the solute carbon and the solute nitrogen to improve the bake hardenability. Ti and/or Nb alloying for nitride and carbide precipitation and low carbon content below 0.003% are used to solve strain aging and formability problem for automotive materials. However, in the present study, the effect of micro-precipitation of copper sulfide on the bake hardenability and fatigue properties of extremely low carbon steel has been investigated. The bake hardenability of Cu-alloyed bake hardening (Cu-BH) steel was slightly higher (5 MPa) than that of Nb-alloyed bake hardening (Nb-BH) steel, but the fatigue limit of Cu-BH steel was far higher (45 MPa) than that of Nb-BH steel. All samples showed the ductile fracture behavior and some samples revealed distinct fatigue stages, such as crack initiation, stable crack growth and unstable crack growth.

Effect Of The Microstructure And Aging Treatment Conditions On Strength Of High Strength Invar Alloy (고강도 인바합금의 강도에 미치는 미세구조와 시효처리 조건의 영향)

  • Jung, J.Y.;Lee, K.D.;Ha, T.K.;Jeong, H.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.322-325
    • /
    • 2007
  • Precipitation characteristics of the Fe-36Ni based high strength Invar alloy for power transmission wire was investigated in this study. High strength can be obtained in this alloy through solution hardening, precipitation hardening and strain hardening by cold working. In the present study, ingots of Fe-36Ni based Invar alloys with the contents of C, Mo and V varied. Microstructure observations by OM, SEM, and TEM were carried out to validate the simulation results. BCC phase and $FeNi_3$ phase are also expected at lower temperatures below $500^{\circ}C$. Aging treatments were carried out at temperatures ranging from 400 to $900^{\circ}C$ for time intervals from 3 min to 100hrs. Peak aging condition was obtained as $400^{\circ}C$ and 1 hr. With temperature increased, peak strength was decreased abruptly. Microstructure observation was conducted by optical microscopy, scanning electron microscopy, and transmission electron microscopy.

  • PDF

A Study on the Precipitation Behavior of Disordered ${\gamma}$ Phase in an $L1_2$ Ordered ${\gamma}^{\prime}-Ni_3(Al,Ti)$ Phase ($L1_2$${\gamma}^{\prime}-Ni_3(Al,Ti)$ 규칙상 중에 불규칙 ${\gamma}$상의 석출거동에 관한 연구)

  • Han, Chang-Suk
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.19 no.5
    • /
    • pp.249-256
    • /
    • 2006
  • Structural studies have been performed on precipitation hardening found in $L1_2$ ordered ${\gamma}^{\prime}-Ni_3(Al,Ti)$ alloys using transmission electron microscopy. A uniform solid solution of ${\gamma}^{\prime}-L1_2$ ordered phase supersaturated with Ni can be obtained by solution annealing in a suitable temperature range. The ${\gamma}^{\prime}$ phase hardens appreciably by the fine precipitation of disordered ${\gamma}$. The shape of ${\gamma}$ precipitates formed during aging is initially spherical or round-cubic and grow into platelets as aging proceeds. High resolution electron microscopy revealed that the ${\gamma}$ precipitates are perfectly coherent with the matrix ${\gamma}^{\prime}$ as long as the ${\gamma}$-precipitates are plates. The loss of coherency initiates by the introduction of dislocations at the ${\gamma}/{\gamma}^{\prime}$ interface followed by the step formation at the dislocations. The ${\gamma}$ precipitates become globular after the loss of coherency. The strength of ${\gamma}^{\prime}-Ni_3(Al,Ti)$ increases over the temperature range of experiment by the precipitation of fine ${\gamma}$ particles. The peak temperature where a maximum strength was obtained shifted to higher temperature.

Prediction on the Wear Resistance of Contact Tips for GMA Welding (GMA용접에서 콘택트팁의 내마모성에 대한 예측)

  • 김남훈;김희진;유회수;고진현
    • Journal of Welding and Joining
    • /
    • v.22 no.4
    • /
    • pp.35-42
    • /
    • 2004
  • Contact tips are required to have a higher resistance to wear and thus to have an extended life time under the advanced GMAW welding process. Several requirements have been specified and employed by domestic industries for selecting their tips for such a purpose. However no attempt has been made to justify their requirements based on the experimental data of wear resistance or life time of contact tips. In this study, five different contact tips with three different compositions were employed for actual GMA welding up to 4 hours and were evaluated their wear resistance by measuring in every one hour the area of enlarged hole at the exit side. Experimental results clearly showed that the Cr-containing tips strengthened by precipitation hardening have much better resistance to wear than those made by work hardening. It was further noticed that Cr is an excellent alloying element for improving the wear resistance of contact tips only when it is in an properly aged condition. Initial hardness may play some role in the early stage of wear but not in the later stage of welding because the microstructure of tip changes significantly by the prolonged exposure to welding arc heat. Based on these results, critical review has been made on the current requirements employed by domestic industries. Of importance is that a new guideline has been confirmed to be more reasonable.