DOI QR코드

DOI QR Code

The investigation of the carbon on irradiation hardening and defect clustering in RPV model alloy using ion irradiation and OKMC simulation

  • Yitao Yang (Institute of Modern Physics, Chinese Academy of Sciences) ;
  • Jianyang Li (Institute of Modern Physics, Chinese Academy of Sciences) ;
  • Chonghong Zhang (Institute of Modern Physics, Chinese Academy of Sciences)
  • Received : 2023.08.31
  • Accepted : 2024.01.10
  • Published : 2024.06.25

Abstract

The precipitation of solutes is a major cause of irradiation hardening and embrittlement limiting the service life of reactor pressure vessel (RPV) steels. Impurities play a significant role in the formation of precipitation in RPV materials. In this study, the effects of carbon on cluster formation and irradiation hardening were investigated in an RPV alloy Fe-1.35Mn-0.75Ni using C and Fe ions irradiation at 290 ℃. Nanoindentation results showed that C ion irradiation led to less hardening below 1.0 dpa, with hardening continuing to increase gradually at higher doses, while it was saturated under Fe ion irradiation. Atom probe tomography revealed a broad size distribution of Ni-Mn clusters under Fe ion irradiation, contrasting a narrower size distribution of small Ni-Mn clusters under C ion irradiation. Further analysis indicated the influence of carbon on the cluster formation, with solute-precipitated defects dominating under C ion irradiation but interstitial clusters dominating under Fe ion irradiation. Simulations suggested that carbon significantly affected solute nucleation, with defect clusters displaying smaller size and higher density as carbon concentration increased. The higher hardening at doses above 1.0 dpa was attributed to a substantial increase in the number density of defect clusters when carbon was present in the matrix.

Keywords

Acknowledgement

This study is supported by the National Key Research and Development Programs of China (Grant No.2022YFE03120001 and 2017YFB0702202). The authors gratefully acknowledge the operation team of the 320 kV platform for their help in the ion irradiation experiments.

References

  1. S.J. Zinkle, J.T. Busby, Structural materials for fission & fusion energy, Mater. Today 12 (2009) 12-19. https://doi.org/10.1016/S1369-7021(09)70294-9
  2. W.-Y. Chen, Y. Miao, J. Gan, M.A. Okuniewski, S.A. Maloy, J.F. Stubbins, Neutron irradiation effects in Fe and Fe-Cr at 300 ℃, Acta Mater. 111 (2016) 407-416. https://doi.org/10.1016/j.actamat.2016.03.060
  3. G.R. Odette, G.E. Lucas, Embrittlement of nuclear reactor pressure vessels, JOM 53 (2001) 18-22. https://doi.org/10.1007/s11837-001-0081-0
  4. G.E. Lucas, An evolution of understanding of reactor pressure vessel steel embrittlement, J. Nucl. Mater. 407 (2010) 59-69. https://doi.org/10.1016/j.jnucmat.2010.07.010
  5. S. Shu, N. Almirall, P.B. Wells, T. Yamamoto, G.R. Odette, D.D. Morgan, Precipitation in Fe-Cu and Fe-Cu-Mn model alloys under irradiation: dose rate effects, Acta Mater. 157 (2018) 72-82. https://doi.org/10.1016/j.actamat.2018.07.017
  6. L. Debarberis, B. Acosta, A. Zeman, F. Sevini, A. Ballesteros, A. Kryukov, F. Gillemot, M. Brumovsky, Analysis of WWER-440 and PWR RPV welds surveillance data to compare irradiation damage evolution, J. Nucl. Mater. 350 (2006) 173-181. https://doi.org/10.1016/j.jnucmat.2006.01.003
  7. L.T. Belkacemi, E. Meslin, J.-P. Crocombette, B. Radiguet, F. Lepretre, B. Decamps, Striking effect of solute elements (Mn, Ni) on radiation-induced segregation/precipitation in iron-based model alloys, J. Nucl. Mater. 548 (2021) 152807.
  8. X. Hu, T. Koyanagi, M. Fukuda, Y. Katoh, L.L. Snead, B.D. Wirth, Defect evolution in single crystalline tungsten following low temperature and low dose neutron irradiation, J. Nucl. Mater. 470 (2016) 278-289. https://doi.org/10.1016/j.jnucmat.2015.12.040
  9. Y.-W. You, X.-S. Kong, X.-B. Wu, C.S. Liu, Q.F. Fang, J.L. Chen, G.-N. Luo, Interaction of carbon, nitrogen and oxygen with vacancies and solutes in tungsten, RSC Adv. 5 (2015) 23261-23270. https://doi.org/10.1039/C4RA13854F
  10. V. Jansson, L. Malerba, OKMC simulations of Fe-C systems under irradiation: sensitivity studies, J. Nucl. Mater. 452 (2014) 118-124. https://doi.org/10.1016/j.jnucmat.2014.05.011
  11. C. Domain, C.S. Becquart, J. Foct, Ab initiostudy of foreign interstitial atom (C, N) interactions with intrinsic point defects inα-Fe, Phys. Rev. B 69 (2004).
  12. C.C. Fu, E. Meslin, A. Barbu, F. Willaime, V. Oison, Effect of C on vacancy migration in α-iron, Solid State Phenom. 139 (2008) 157-164. https://doi.org/10.4028/www.scientific.net/SSP.139.157
  13. Y.-Z. Niu, Y.-H. Li, Q.-Y. Ren, Z.-Z. Li, D. Terentyev, H.-Z. Ma, H.-B. Zhou, G.-H. Lu, Influence of carbon on the evolution of irradiation defects in tungsten, J. Nucl. Mater. 579 (2023) 154393.
  14. G.S. Was, Challenges to the use of ion irradiation for emulating reactor irradiation, J. Mater. Res. 30 (2015) 1158-1182. https://doi.org/10.1557/jmr.2015.73
  15. S.J. Zinkle, L.L. Snead, Opportunities and limitations for ion beams in radiation effects studies: bridging critical gaps between charged particle and neutron irradiations, Scr. Mater. 143 (2018) 154-160. https://doi.org/10.1016/j.scriptamat.2017.06.041
  16. Y. Yang, C. Zhang, Z. Ding, C. Su, T. Yan, Y. Song, Y. Cheng, A correlation between micro- and nano-indentation on materials irradiated by high-energy heavy ions, J. Nucl. Mater. 498 (2018) 129-136. https://doi.org/10.1016/j.jnucmat.2017.10.025
  17. Y. Yang, C. Zhang, Y. Meng, J. Liu, J. Gou, Y. Xian, Y. Song, Nanoindentation on V-4Ti alloy irradiated by H and He ions, J. Nucl. Mater. 459 (2015) 1-4. https://doi.org/10.1016/j.jnucmat.2015.01.020
  18. C.H. Zhang, Y.T. Yang, Y. Song, J. Chen, L.Q. Zhang, J. Jang, A. Kimura, Irradiation response of ODS ferritic steels to high-energy Ne ions at HIRFL, J. Nucl. Mater. 455 (2014) 61-67. https://doi.org/10.1016/j.jnucmat.2014.04.015
  19. H. Zhang, C. Zhang, Y. Yang, Y. Meng, J. Jang, A. Kimura, Irradiation hardening of ODS ferritic steels under helium implantation and heavy-ion irradiation, J. Nucl. Mater. 455 (2014) 349-353. https://doi.org/10.1016/j.jnucmat.2014.06.062
  20. G.S. Was, Z. Jiao, E. Getto, K. Sun, A.M. Monterrosa, S.A. Maloy, O. Anderoglu, B. H. Sencer, M. Hackett, Emulation of reactor irradiation damage using ion beams, Scr. Mater. 88 (2014) 33-36. https://doi.org/10.1016/j.scriptamat.2014.06.003
  21. S. Shen, F. Chen, X. Tang, J. Lin, G. Ge, J. Liu, Effects of carbon doping on irradiation resistance of Fe38Mn40Ni11Al4Cr7 high entropy alloys, J. Nucl. Mater. 540 (2020) 152380.
  22. Z. Su, T. Shi, J. Yang, H. Shen, Z. Li, S. Wang, G. Ran, C. Lu, The effect of interstitial carbon atoms on defect evolution in high entropy alloys under helium irradiation, Acta Mater. 233 (2022) 117955.
  23. J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Range of Ions in Solids, Pergamon, New York, 1984.
  24. M. Chiapetto, L. Malerba, C.S. Becquart, Nanostructure evolution under irradiation in FeMnNi alloys: a "grey alloy" object kinetic Monte Carlo model, J. Nucl. Mater. 462 (2015) 91-99. https://doi.org/10.1016/j.jnucmat.2015.03.045
  25. J. Li, C. Zhang, Y. Yang, T. Wang, M.-B. Ignacio, An object kinetic Monte Carlo simulation for defect evolution of neutron-irradiated reactor pressure vessel steels: carbon sensitive study, Phys. Status Solidi B 258 (2021) 2100149.
  26. R.S. Averback, Atomic displacement processes in irradiated metals, J. Nucl. Mater. 216 (1994) 49-62. https://doi.org/10.1016/0022-3115(94)90006-X
  27. A.P. Thompson, H.M. Aktulga, R. Berger, D.S. Bolintineanu, W.M. Brown, P. S. Crozier, P.J. in 't Veld, A. Kohlmeyer, S.G. Moore, T.D. Nguyen, R. Shan, M. J. Stevens, J. Tranchida, C. Trott, S.J. Plimpton, Lammps - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales, Comput. Phys. Commun. 271 (2022) 108171.
  28. J. Byggmastar, F. Granberg, K. Nordlund, Effects of the short-range repulsive potential on cascade damage in iron, J. Nucl. Mater. 508 (2018) 530-539. https://doi.org/10.1016/j.jnucmat.2018.06.005
  29. A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool, modell, Simul. Mater. Sci. Eng 18 (2009) 015012.
  30. K. Nordlund, S.J. Zinkle, A.E. Sand, F. Granberg, R.S. Averback, R. Stoller, T. Suzudo, L. Malerba, F. Banhart, W.J. Weber, F. Willaime, S.L. Dudarev, D. Simeone, Improving atomic displacement and replacement calculations with physically realistic damage models, Nat. Commun. 9 (2018).
  31. O.V. Ogorodnikova, M. Majerle, V.V. Gann, J. Cizek, P. Hruska, S. Simakov, M. Stefanik, V. Zach, Verification of the theory of primary radiation damage by comparison with experimental data, J. Nucl. Mater. 525 (2019) 22-31. https://doi.org/10.1016/j.jnucmat.2019.07.019
  32. N. Soneda, T.D. de la Rubia, Defect production, annealing kinetics and damage evolution in α-Fe: an atomic-scale computer simulation, Philos. Mag. A. 78 (1998) 995-1019. https://doi.org/10.1080/01418619808239970
  33. D. Terentyev, K. Heinola, A. Bakaev, E.E. Zhurkin, Carbon-vacancy interaction controls lattice damage recovery in iron, Scr. Mater. 86 (2014) 9-12. https://doi.org/10.1016/j.scriptamat.2014.04.003
  34. P. Hosemann, D. Kiener, Y. Wang, S.A. Maloy, Issues to consider using nano indentation on shallow ion beam irradiated materials, J. Nucl. Mater. 425 (2012) 136-139. https://doi.org/10.1016/j.jnucmat.2011.11.070
  35. W.D. Nix, H. Gao, Indentation size effects in crystalline materials: a law for strain gradient plasticity, J. Mech. Phys. Solid. 46 (1998) 411-425. https://doi.org/10.1016/S0022-5096(97)00086-0
  36. R. Kasada, Y. Takayama, K. Yabuuchi, A. Kimura, A new approach to evaluate irradiation hardening of ion-irradiated ferritic alloys by nano-indentation techniques, Fusion Eng. Des. 86 (2011) 2658-2661. https://doi.org/10.1016/j.fusengdes.2011.03.073
  37. C.D. Hardie, C.A. Williams, S. Xu, S.G. Roberts, Effects of irradiation temperature and dose rate on the mechanical properties of self-ion implanted Fe and Fe-Cr alloys, J. Nucl. Mater. 439 (2013) 33-40. https://doi.org/10.1016/j.jnucmat.2013.03.052
  38. H. Watanabe, S. Masaki, S. Masubuchi, N. Yoshida, K. Dohi, Effects of Mn addition on dislocation loop formation in A533B and model alloys, J. Nucl. Mater. 439 (2013) 268-275. https://doi.org/10.1016/j.jnucmat.2012.08.029
  39. P. Prak Tom, K. Murakami, V.N. Luu, B.V.C. Nguyen, L. Chen, Effect of solute elements (Ni, Mn) in Fe-based alloys on dislocation loop evolution under Fe2+ ion irradiation, J. Nucl. Mater. 559 (2022) 153489.
  40. E. Meslin, B. Radiguet, P. Pareige, C. Toffolon, A. Barbu, Irradiation-Induced solute clustering in a low Nickel FeMnNi ferritic alloy, Exp. Mech. 51 (2011) 1453-1458. https://doi.org/10.1007/s11340-011-9476-1
  41. J.D. Hunn, E.H. Lee, T.S. Byun, L.K. Mansur, Helium and hydrogen induced hardening in 316LN stainless steel, J. Nucl. Mater. 282 (2000) 131-136. https://doi.org/10.1016/S0022-3115(00)00424-4
  42. C.-L. Chen, A. Richter, R. Kogler, G. Talut, Dual beam irradiation of nanostructured FeCrAl oxide dispersion strengthened steel, J. Nucl. Mater. 412 (2011) 350-358. https://doi.org/10.1016/j.jnucmat.2011.03.041
  43. A.C. Fischer-Cripps, Nanoindentation, third, Springer, Berlin, 2011.
  44. L. Tan, J.T. Busby, Formulating the strength factor α for improved predictability of radiation hardening, J. Nucl. Mater. 465 (2015) 724-730. https://doi.org/10.1016/j.jnucmat.2015.07.009