• Title/Summary/Keyword: Precipitation Efficiency

Search Result 407, Processing Time 0.033 seconds

Scavenging Efficiency Based on Long-Term Characteristics of Precipitation and Particulate Matters in Seoul, Korea (서울지역 장기간 강수와 미세먼지의 특성 분석에 기반한 미세먼지 세정효과)

  • Suji Han;Junshik Um
    • Atmosphere
    • /
    • v.33 no.4
    • /
    • pp.367-385
    • /
    • 2023
  • The variabilities of precipitation and particulate matters (i.e., PM10 and PM2.5) and the scavenging efficiency of PMs by precipitation were quantified using long-term measurements in Seoul, Korea. The 21 years (2001~2021) measurements of precipitation and PM10 mass concentrations, and the 7 years (2015~2021) of PM2.5 mass concentrations were used. Statistical analysis was performed for each period (i.e., year, season, and month) to identify the long-term variabilities of PMs and precipitation. PM10 and PM2.5 decreased annually and the decreasing rate of PM10 was greater than PM2.5. The precipitation intensity did not show notable variation, whereas the annual precipitation amount showed a decreasing trend. The summer precipitation amount contributed 61.10% to the annual precipitation amount. The scavenging efficiency by precipitation was analyzed based on precipitation events separated by 2-hour time intervals between hourly precipitation data for 7 years. The scavenging efficiencies of PM10 and PM2.5 were quantified as a function of precipitation characteristics (i.e., precipitation intensity, amount, and duration). The calculated average scavenging efficiency of PM10 (PM2.5) was 39.59% (35.51%). PM10 and PM2.5 were not always simultaneously scavenged due to precipitation events. Precipitation events that simultaneously scavenged PM10 and PM2.5 contributed 42.24% of all events, with average scavenging efficiency of 42.93% and 43.39%. The precipitation characteristics (i.e., precipitation intensity, precipitation amount, and precipitation duration) quantified in these events were 2.42 mm hr-1, 15.44 mm, and 5.51 hours. This result corresponds to 145% (349%; 224%) of precipitation intensity (amount; duration) for the precipitation events that do not simultaneously scavenge PM10 and PM2.5.

A Study on the Development of Thin ESP for High Efficient Air-conditioner (공조용 박형 전기집진장치 개발에 관한 연구)

  • Hong, Yeong-Gi;Sin, Su-Yeon;Jo, Jeong-Su;Park, Jeong-Hu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.1
    • /
    • pp.34-38
    • /
    • 1999
  • In order to develop a thin type ESP(Electrostatic Precipitator) for high efficient air-conditioner with low concentration of ozone generation, collecting electrode spacing should be narrower than that from Deutsch formula and minimizes discharge current in ionizer. In this paper, the effect of applied voltage on the precipitation efficiency and ozone concentration of scroll type ESP was studied. As a result, precipitation efficiency(one pass) was improved by about 30[%] from increment of collector voltage(3.5[㎸]). Precipitation efficiency was increased with increasing ionizer voltage. And after some point, the efficiency was saturated. At the point, voltage and ionizer current was 5.2[㎸] and 95$[\muA]$ per meter respectively. At these applied voltage conditions, ozone concentration was saturated about 0.01[ppm] after 3 hours in 23$[m^3]$ closed room test.

  • PDF

Application of machine learning for merging multiple satellite precipitation products

  • Van, Giang Nguyen;Jung, Sungho;Lee, Giha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.134-134
    • /
    • 2021
  • Precipitation is a crucial component of water cycle and play a key role in hydrological processes. Traditionally, gauge-based precipitation is the main method to achieve high accuracy of rainfall estimation, but its distribution is sparsely in mountainous areas. Recently, satellite-based precipitation products (SPPs) provide grid-based precipitation with spatio-temporal variability, but SPPs contain a lot of uncertainty in estimated precipitation, and the spatial resolution quite coarse. To overcome these limitations, this study aims to generate new grid-based daily precipitation using Automatic weather system (AWS) in Korea and multiple SPPs(i.e. CHIRPSv2, CMORPH, GSMaP, TRMMv7) during the period of 2003-2017. And this study used a machine learning based Random Forest (RF) model for generating new merging precipitation. In addition, several statistical linear merging methods are used to compare with the results of the RF model. In order to investigate the efficiency of RF, observed data from 64 observed Automated Synoptic Observation System (ASOS) were collected to evaluate the accuracy of the products through Kling-Gupta efficiency (KGE), probability of detection (POD), false alarm rate (FAR), and critical success index (CSI). As a result, the new precipitation generated through the random forest model showed higher accuracy than each satellite rainfall product and spatio-temporal variability was better reflected than other statistical merging methods. Therefore, a random forest-based ensemble satellite precipitation product can be efficiently used for hydrological simulations in ungauged basins such as the Mekong River.

  • PDF

Effect of Additives for Prevention of NaBO2 Precipitation on Hydrogen Generation Properties of NaBH4 Hydrolysis (NaBO2의 석출 방지를 위한 첨가제가 NaBH4 가수분해의 수소발생특성에 미치는 영향)

  • Oh, Taekyun;Kwon, Sejin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.1
    • /
    • pp.1-11
    • /
    • 2013
  • Additives such as glycerol, methanol, acetone, and ethanol were used to prevent $NaBO_2$ from precipitation, and their effects on hydrogen generation properties of $NaBH_4$ hydrolysis were investigated. When the concentration of additives was 5 wt%, the additives such as methanol, acetone, and ethanol could not prevent $NaBO_2$ precipitation. Although glycerol prevented $NaBO_2$ precipitation, conversion efficiency decreased to 78.0% due to its viscosity. Based on test results, hydrogen generation tests were also performed at various concentration of glycerol and methanol to investigate the concentration effects on hydrogen generation properties. As the concentration of glycerol increased from 1 wt% to 3 wt%, conversion efficiency increased owing to additive effect. When its concentration increased to 5 wt%, conversion efficiency decreased due to its viscosity. As the concentration of methanol increased from 5 wt% to 10 wt%, conversion efficiency increased owing to additive effect. When its concentration increased to 15 wt%, conversion efficiency decreased due to $NaB(OCH_3)_4$ precipitate. Although conversion efficiency decreased about 1% when 3 wt% glycerol was added, $NaBO_2$ precipitation was prevented. Consequently, addition of 3 wt% glycerol to $NaBH_4$ solution improves stability of hydrogen generation system.

Effect of oxygen concentration and oxygen precipitation of the single crystalline wafer on solar cell efficiency (단결정 실리콘에서 산소농도에 따른 산소석출결함 변화와 태양전지 효율에 미치는 영향)

  • Lee, Song Hee;Kim, Sungtae;Oh, Byoung Jin;Cho, Yongrae;Baek, Sungsun;Yook, Youngjin
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.6
    • /
    • pp.246-251
    • /
    • 2014
  • Recent studies have shown methods of improving solar cell efficiency. Especially on single crystalline silicon wafer which is high-efficiency solar cell material that has been widely studied. Interstitial oxygen (Oi) is the main impurity in the Czochralski (Cz) growing method, and excess of this can form precipitates during cell fabrication. We have demonstrated the effect of Oi impurity and oxygen precipitation concentration of the wafer on Cz-silicon solar cell efficiency. The result showed a decrease in cell efficiency as Oi and oxygen precipitation increase. Moreover, we have found that the critical point of [Oi] to bring higher cell efficiency is at 14.5 ppma in non-existent Bulk Micro Defect (BMD).

A study on Removal Method of Humidifier Particles Using Electrostatic Precipitation Technology

  • Inpyo Cha;Taekeon Jung;Hyunjun Yun;Chuljun Choi
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.239-245
    • /
    • 2023
  • In this research, our objective was to investigate the efficacy of electrostatic precipitation in capturing mist particles. We assumed that it could be helpful in multi-functional facilities and similar environments where both humidification and dehumidification are required. We derived the air density of the humidified air based on its properties using Dalton's law. The analysis was performed to evaluate the collection efficiency of capturing mist aerosols of various sizes. As a result, we revealed that under the conditions of a dry-bulb temperature of 26.0℃ and relative humidity of 8%, the system achieved a collection efficiency of 99.999% or more for aerosols larger than 2.5㎛. These results indicate that electrostatic precipitation technology shows great promise as an effective method for capturing mist particles.

Evaluation of Phosphorus Removal Efficiency at Various Coagulation Conditions Using Polyaluminum Chloride with Different Al Contents (Al 함량이 다른 PAC를 이용한 응집 조건 별 인 제거효율 평가)

  • Jeong-Hak Choi;Geon-Gon Yoon;Chang-Han Lee
    • Journal of Environmental Science International
    • /
    • v.32 no.10
    • /
    • pp.731-739
    • /
    • 2023
  • In this study, lab-scale phosphorus coagulation/precipitation experiments were performed using three types of polyaluminum chloride (PAC) with different Al contents (10%, 12%, and 17%). The PO4-P removal efficiencies at various operating conditions, such as initial PO4-P concentration, initial pH, and Al/P molar ratio, were evaluated, and correlations among the operating factors affecting phosphorus coagulation/precipitation with PAC were derived to optimize the process efficiency. When the initial PO4-P concentration was 0.065 and 0.161 mmol P/L under an initial pH of 8-10, the optimal PAC dose was 0.126-0.378 and 0.189-0.667 mmol Al/L, respectively. Under these conditions, the Al/P molar ratio was 2.16-6.18 and 1.28-4.30, respectively, and the PO4-P removal efficiency was in the range of 40.2-92.5%. When the Al/P molar ratio was 2 or less under an initial pH condition of 6-8, the PO4-P removal efficiency was approximately ≤40% owing to insufficient Al3+ ions. However, when the Al/P molar ratio is 3-5, the PO4-P removal efficiency improved to approximately 80-90%. Thus, the optimal Al/P molar ratio to achieve a PO4-P removal efficiency of over 90% was determined to be approximately 4 in the PO4-P coagulation/precipitation process using PAC.

Electrostatic Precipitation Characteristics of Coal Combustion Boiler (석탄연소 보일러용 분진의 전기집진특성)

  • Lee, Tae-Sik;Bun, Cha-Seok;Kim, Gyeong-Seok;Nam, Chang-U;Lee, Gyu-Cheol
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.6
    • /
    • pp.475-482
    • /
    • 1999
  • The electrostatic precipitation characteristics of two kinds of fly ashes, one derived from a fluidized bed combustor(FBC), the other from a pulverized coal(PC) fired furnace, have been studied on a pilot plant. Experiments have been carried out to enhance the collection efficiency while changing the operating conditions for two kinds of coal ashes, respectively. It has been shown that collection efficiency is affected by many factors such as shape of the ashes, dust contents, humidity, and temperature, etc. Experimantal results showed that collection efficiency of the FBC ashes was higher than that of the PC fly ash in spite of the small size of the FBC ashes. The experimetal results have been applied to the collection efficiency equations to show that the modified Deutsch equation was well agreed with experiment results if modification parameter k was set to 0.6 for the fluidized bed fly ashes and to 0.43 for the pulverized coal fly ashes.

  • PDF

Characteristics of Nano Particle Precipitation and Residual Ozone Decomposition for Two-Stage ESP with DBD (배리어 유전체 방전형 2단 전기집진기의 나노입자 집진 및 잔류 오존 제거 특성)

  • Byeon, Jeong-Hoon;Ji, Jun-Ho;Yoon, Ki-Young;Hwang, Jung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1678-1683
    • /
    • 2003
  • DBD(Dielectric Barrier Discharge) plasma in air is well established for the production of large quantities of ozone and is more recently being applied to aftertreatment processes for HAPs(Hazardous Air Pollutants). Although DBD high electron density and energy, its potential use as nano and sub-micron sized particle charging are not well known. Aim of this work is to determine design and operating parameters of a two-stage ESP with DBD. DBD and ESP are used as particle charger and precipitator, respectively. We measured particle precipitation efficiency of two-stage ESP and estimated ozone decomposition of both pelletized $MnO_2$ catalyst and pelletized activated carbon. To examine the particle precipitation efficiency, nano and sub-micron sized particles were generated by a tube furnace and an atomizer. AC voltage of $7{\sim}10$ kV(rms) and 60 Hz is used as DBD plasma source. DC -8 kV is applied to the ESP for particle precipitation. The overall particle collection efficiency for the two-stage ESP with DBD is over 85 % under 0.64 m/s face velocity. Ozone decomposition efficiency with pelletized $MnO_2$ catalyst or pelletized activated carbon packed bed is over 90 % when the face velocity is under 0.4 m/s in dry air.

  • PDF

Effects of Organic Materials and Precipitation on Nitrogen Uptake Efficiency in Sorghum ${\times}$ Sudangrass Hybrid (유기자재와 강수량이 수수${\times}$수단그라스 교잡종의 질소이용효율에 미치는 영향)

  • Choi, Hyun-Sug;Lee, Youn;Jung, Jung-Ah;Jee, Hyeong-Jin;Lee, Sang-Min;Kuk, Yong-In;Jung, Seok-Kyu
    • Korean Journal of Organic Agriculture
    • /
    • v.20 no.3
    • /
    • pp.357-368
    • /
    • 2012
  • This study was conducted to evaluate soil inorganic N concentrations and N uptake efficiency of sorghum ${\times}$ sudangrass hybrid (Sorghum bicolor (L.) Moench) as affected by organic nutrient sources from 2009 to 2011. The treatments included chemical fertilizer, compost, oilcake, alfalfa hay mulch, and control. Nutrient applications were made at rates equivalent to approximately 210 kg of actual N per hectare. The precipitation during the growth period from May to September was higher in 2011, followed by 2009, and 2010. Oilcake had the lowest C:N ratio in the raw materials. Compost treatment slowed N-mineralization rate in soil during the measured years. Soil mineral nutrition and dry matter production were not consistently affected by treatments, but the dry matter production was negatively correlated with the amount of precipitation from May to September for three years. Chemical fertilizer treatment increased N efficiency in plants in the first two years, observing with lower N efficiency in plants treated with compost for 3 years. Increased precipitation from June to August improved N efficiency in sudangrass plants treated with compost but reduced the efficiency with the chemical fertilizer. Total dry matter production and N efficiency in plants were not affected by the C:N ratio of the raw materials rather than weather condition.