• 제목/요약/키워드: Precedence constraints

검색결과 59건 처리시간 0.018초

A Case Study of Human Resource Allocation for Effective Hotel Management

  • Murakami, Kayoko;Tasan, Seren Ozmehmet;Gen, Mitsuo;Oyabu, Takashi
    • Industrial Engineering and Management Systems
    • /
    • 제10권1호
    • /
    • pp.54-64
    • /
    • 2011
  • The purpose of this study is to optimally allocate the human resources to tasks while minimizing the total daily human resource costs and smoothing the human resource usage. The human resource allocation problem (hRAP) under consideration contains two kinds of special constraints, i.e. operational precedence and skill constraints in addition to the ordinary constraints. To deal with the multiple objectives and the special constraints, first we designed this hRAP as a network problem and then proposed a Pareto multistage decisionbased genetic algorithm (P-mdGA). During the evolutionary process of P-mdGA, a Pareto evaluation procedure called generalized Pareto-based scale-independent fitness function approach is used to evaluate the solutions. Additionally, in order to improve the performance of P-mdGA, we use fuzzy logic controller for fine-tuning of genetic parameters. Finally, in order to demonstrate the applicability and to evaluate the performance of the proposed approach, P-mdGA is applied to solve a case study in a hotel, where the managers usually need helpful automatic support for effectively allocating hotel staff to hotel tasks.

할당문제 해법을 이용한 부분적 선후관계가 있는 군사훈련 일정 수립에 관한 연구 (Scheduling for Military Training of Serials with Partial Precedence Relationships based on the Assignment Problem)

  • 이호주;김영대
    • 한국군사과학기술학회지
    • /
    • 제7권3호
    • /
    • pp.77-83
    • /
    • 2004
  • This paper focuses on a scheduling problem of military training. Repetitive and identical training over multiple serials is a common type of military education. A simple but systematic method is suggested to determine a training schedule for small groups divided from each serial. A satisfactory training schedule and the number of such small groups can be determined by iteratively solving assignment problems with additional constraints. With this method, loads of instructors can also be balanced without violating constraints associated with precedence and continuity relationships among lectures.

A resource-constrained job shop scheduling problem with general precedence constraints

  • Ahn, Jaekyoung
    • 경영과학
    • /
    • 제10권1호
    • /
    • pp.171-192
    • /
    • 1993
  • In this paper, a rule for dispatching operations, named the Most Dissimilar Resources (MDR) dispatching rule is presented. The MDR dispatching rule has been designed to maximize utilization of resources in a resource-constrained job shop with general precedence constraints. In shown that solving the above scheduling problem with the MDR dispatching rule is equivalent to multiple solving of the maximum clique problem. A graph theoretic approach is used to model the latter problem. The pairwise counting heuristic of computational time complexity O(n$^{2}$) is developed to solve the maximum clique problem. An attempt is made to combine the MDR dispatching rule with the existing look-ahead dispatching rules. Computational experience indicates that the combined MDR dispatching rules provide solutions of better quality and consistency than the dispatching rules tested in a resource-constrained job shop.

  • PDF

선행순서결정문제를 위한 Out-of-Kilter 해법의 적용과 부분순환로의 제거 (Elimination of Subtours Obtained by the Out-of-Kilter Algorithm for the Sequential Ordering Problem)

  • 권상호
    • 한국경영과학회지
    • /
    • 제32권3호
    • /
    • pp.47-61
    • /
    • 2007
  • This paper presents two elimination methods of subtours, which is obtained by applying the Out-of-Kilter algorithm to the sequential ordering problem (SOP) to produce a feasible solution for the SOP. Since the SOP is a kind of asymmetric traveling salesman problem (ATSP) with precedence constraints, we can apply the Out-of-Kilter algorithm to the SOP by relaxing the precedence constraints. Instead of patching subtours, both of two elimination methods construct a feasible solution of the SOP by using arcs constructing the subtours, and they improve solution by running 3-opt and 4-opt at each iteration. We also use a perturbation method. cost relaxation to explore a global solution. Six cases from two elimination methods are presented and their experimental results are compared to each other. The proposed algorithm found 32 best known solutions out of the 34 instances from the TSPLIB in a reasonable time.

복합설계를 위한 동시공학적 접근방법 (A Heuristic Approach Solving for the Complex Design with Precedence Constraints in Concurrent Engineering)

  • 조문수;김창영
    • 대한산업공학회지
    • /
    • 제24권2호
    • /
    • pp.185-197
    • /
    • 1998
  • Engineering design involves the specification of many variables that define a product, how it is made, and how it behaves. Before some variables can be determined, other variables must first be known or assumed. This fact implies a precedence order of the variables, and of the tasks of determining these variable consequently. Moreover, design of complex systems may involve a large number of design activities. In this paper, the activity-activity incidence matrix is considered as a representation of design activity analysis which mainly focuses on the precedence constraint. In order to analyze the activity-activity incidence matrix, a heuristic algorithm is proposed, which transforms an activity-activity, parameter-formula, and parameter-parameter incidence matrix into a lower triangular form. The analysis of the structured matrices can not only significantly reduce the overall project complexity by reorganizing few critical tasks in practice, but also aims at obtaining shorter times considering the solution structure by exploring concurrency.

  • PDF

소프트웨어 제품라인의 출시 계획 수립을 위한 탐욕 유전자 알고리듬 (A Greedy Genetic Algorithm for Release Planning in Software Product Lines)

  • 유재욱
    • 산업경영시스템학회지
    • /
    • 제36권3호
    • /
    • pp.17-24
    • /
    • 2013
  • Release planning in a software product line (SPL) is to select and assign the features of the multiple software products in the SPL in sequence of releases along a specified planning horizon satisfying the numerous constraints regarding technical precedence, conflicting priorities for features, and available resources. A greedy genetic algorithm is designed to solve the problems of release planning in SPL which is formulated as a precedence-constrained multiple 0-1 knapsack problem. To be guaranteed to obtain feasible solutions after the crossover and mutation operation, a greedy-like heuristic is developed as a repair operator and reflected into the genetic algorithm. The performance of the proposed solution methodology in this research is tested using a fractional factorial experimental design as well as compared with the performance of a genetic algorithm developed for the software release planning. The comparison shows that the solution approach proposed in this research yields better result than the genetic algorithm.

전제조건과 IDEF3를 응용한 동시공학환경에서의 복합설계 (A Triangularization Algorithm Solving for the Complex Design with Precedence Constraints and IDEF3 Modeling in Concurrent Engineering)

  • 조문수;임태진
    • 제어로봇시스템학회논문지
    • /
    • 제15권7호
    • /
    • pp.742-752
    • /
    • 2009
  • Engineering design involves the specification of many variables that define a product, how it is made, and how it behaves applied to computer, communication and control fields. Before some variables can be determined, other variables must first be known or assumed. This fact implies a precedence order of the variables, and of the tasks of determining these variables consequently. Moreover, design of complex systems may involve a large number of design activities. In this paper, the activity-activity incidence matrix is considered as a representation of design activity analysis which mainly focuses on the precedence constraint with an object of doing IDEF3 in process-centered view. In order to analyze the activity-activity incidence matrix, a heuristic algorithm is proposed, which transforms an activity-activity, parameter-formula, and parameter-parameter incidence matrix into a lower triangular form. The analysis of the structured matrices can not only significantly reduce the overall project complexity by reorganizing few critical tasks in practice, but also aims at obtaining shorter times considering the solution structure by exploring concurrency.

자원제약하의 복수 프로젝트 일정계획을 위한 휴리스틱 알고리즘 (A Heuristic Algorithm for Resource-Constrained Multi - Project Scheduling)

  • 공명달;김정자
    • 산업공학
    • /
    • 제13권1호
    • /
    • pp.110-119
    • /
    • 2000
  • Resource-constrained project scheduling is to allocate limited resources to activities to optimize certain objective functions and to determine a start time for each activity in the project such that precedence constraints and resource requirements are satisfied. This study suggests a multi-project scheduling model which can level work loads, make the most of production capacity and restrain the delay of delivery by developing a heuristic algorithm which minimizes the project completion time and maximizes the load rate under resource constraints.

  • PDF

분산 제어 시스템에서의 태스크와 메시지 기반 스케줄링을 이용한 최적 주기와 우선순위 할당 (Optimal Period and Priority Assignment Using Task & Message-Based Scheduling in Distributed Control Systems)

  • 김형육;이철민;박홍성
    • 제어로봇시스템학회논문지
    • /
    • 제8권6호
    • /
    • pp.506-513
    • /
    • 2002
  • Distributed control systems(DCS) using fieldbus such as CAN have been applied to process systems but it is very difficult to design the DCS while guaranteeing the given end-to-end constraints such as precedence constraints, time constraints, and periods and priorities of tasks and messages. This paper presents a scheduling method to guarantee the given end-to-end constraints. The presented scheduling method is the integrated one considering both tasks executed in each node and messages transmitted via the network and is designed to be applied to a general DCS that has multiple loops with several types of constraints, where each loop consists of sensor nodes with multiple sensors, actuator nodes with multiple actuators and controller nodes with multiple tasks. An assignment method of the optimal period of each loop and a heuristic assignment rule of each message's priority are proposed and the integrated scheduling method is developed based on them.

분산 제어시스템에서 3가지 형태의 실시간 데이터를 고려하는 양극단 스케줄링 방법 (End-to-End Scheduling Method Considering 3-type RT-Data in Distributed Control Systems)

  • 김형육;박홍성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 A
    • /
    • pp.311-314
    • /
    • 2003
  • In recent years, distributed control systems(DCS) using fieldbus such as CAN have been applied to process systems but it is very difficult to design the DCS while guaranteeing the given end-to-end constraints such as precedence constraints, time constraints, and periods and priorities of tasks and messages. This paper presents a scheduling method to guarantee the given end-to-end constraints considering aperiodic, periodic and non-real-time message and task simultaneously. The presented scheduling method is the integrated one considering both tasks executed in each node and messages transmitted via the network and is designed to be applied to a general DCS that has multiple loops with several types of constraints, where each loop consists of sensor nodes with multiple sensors, actuator nodes with multiple actuators and controller nodes with multiple tasks.

  • PDF