• 제목/요약/키워드: Precast concrete deck system

검색결과 33건 처리시간 0.019초

초고성능콘크리트 바닥판 판부재의 최소두께 (Minimum Thickness of the Plate Member for UHPC Deck)

  • 황훈희;유동민;박성용;김병석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2009년도 춘계 학술대회 제21권1호
    • /
    • pp.123-124
    • /
    • 2009
  • 이 연구는 단부거더(Edge girder) 형식의 하이브리드 사장교 적용을 목적으로 하는 최적의 초고성능콘크리트(Uitra High Performance Concrete) 프리캐스트 바닥판 시스템 개발의 일부이다. 고성능 재료인 UHPC의 성능을 적극적으로 활용할 수 있는 고효율 구조형식으로서 교축방향으로 프리스트레스가 도입된 리브를 가지는 단면형식이 제안되었고, 최소요구단면 도출을 위한 설계개념을 정립하였다.

  • PDF

교량 상판(바닥판) 콘크리트 타설용 시스템 거푸집 개발을 위한 요구조건 분석 (Requirement Analysis of the System Form for the Bridge Slab)

  • 김태구;임지영;김선국
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 추계 학술논문 발표대회
    • /
    • pp.195-196
    • /
    • 2014
  • Unlike general construction works, bridge construction is mostly done in a high place. The conventional deck form of bridge is installed between precast concrete girders using sleepers, bridging joints and plywoods, and after concrete is poured to the deck, the form materials are removed at high altitudes. When removing the form, it may be dropped on ground, damaging the materials and resulting in economic loss. In addition, safety accidents are likely as the works are performed in a high place, and as the manpower increases, the cost increases. Also, it is difficult to install and remove temporary equipment. Therefore, it is required to develop a system form that allows easier and quicker installation and removal by unskilled workers and ensures safety of workers. In this regard, the study is intended to analyze requirements for the system form for pouring concrete to bridge decks, which can be easily installed and removed. The study result will be used as basic information for development of the system form for pouring concrete to bridge decks.

  • PDF

Mechanical behavior of steel-concrete composite decks with perfobond shear connectors

  • Allahyari, Hamed;Dehestani, Mehdi;Beygi, Morteza H.A.;Neya, Bahram Navayi;Rahmani, Ebrahim
    • Steel and Composite Structures
    • /
    • 제17권3호
    • /
    • pp.339-358
    • /
    • 2014
  • Exodermic deck systems are new composite steel grid deck systems which have been used in various projects during the past decade. One of the eminent features of this system is considerable reduction in the structure weight compared to the ordinary reinforced concrete decks and also reduction in construction time by using precast Exodermic decks. In this study, dynamic properties of the Exodermic deck bridges with alternative perfobond shear connectors are investigated experimentally. In order to evaluate the dynamic properties of the decks, peak picking and Nyquist circle fit methods are employed. Frequencies obtained experimentally are in good agreement with the results of the finite-element solution, and the experimental results show that the first mode is the most effective mode among the obtained modes. The first four modes are the rigid translational motion modes, and the next two modes seem to be rigid rotational motion modes around a horizontal axis. From the 7th mode onwards, modes are flexible. The range of damping ratios is about 0.5%. Furthermore, the static behavior of the Exodermic decks under a static load applied at the center of the decks was investigated. Failure of the decks under positive bending was punching-shear. The bending strength of the decks under negative bending was about 50 percent of their strength under positive bending. In addition, the weight of an Exodermic deck is about 40% of that of an equivalent reinforced concrete slab.