• Title/Summary/Keyword: Pre-visualization

Search Result 179, Processing Time 0.022 seconds

A Pre-Visualization Method for FDM 3D Printing Based on Perlin Noise (FDM 3D 프린팅을 위한 Perlin 노이즈 기반 사전 시각화 기법)

  • Lim, Jae-Gwang;Jang, Seung-Ho;Hong, Jeong-Mo
    • Korean Journal of Computational Design and Engineering
    • /
    • v.21 no.3
    • /
    • pp.224-233
    • /
    • 2016
  • We propose a new method to visualize 3D models for FDM (Fused Deposition. Modeling) printing that appearance of the printed results can be predicted more realistically as that the efficiency of the modeling-printing process can be improved. The layered nature of horizontal slicing and the vibratory nozzle movements of customer-level FDM 3D printers leaving the characteristic patterns of noisy stripes on the surfaces of printed objects make difficulties in prediction of printed result in company with the thermal contraction of filament material. First, our method analyses the G-codes generated by common slicers to obtain proper outlines and take advantages of a modified version of Perlin noise based texturing method for rendering efficiency and enough number of control parameters on the visual details. The results show improved rendering details of pre-visualization of FDM printing.

Flow Characteristics in a Human Airway model for Oral Cancer Surgery by PIV Experiment and Numerical Simulation (PIV 측정 및 수치해석을 이용한 구강암 수술에 따른 기도 형상 내 유동 특성)

  • Hong, Hyeonji;An, Se Hyeon;Seo, Heerim;Song, Jae Min;Yeom, Eunseop
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.3
    • /
    • pp.115-122
    • /
    • 2021
  • Oral cancer surgery typically consists of resection of lesion, neck dissection and reconstruction, and it has an impact on the position of hyoid bone. Therefore, morphological change of airway can occur since the geometric parameter of airway is correlated with the hyoid bone. Airflow is affected by geometry of the airway. In this study, flow characteristics were compared between pre- and post-surgery models by both particle image velocimetry (PIV) and numerical simulation. 3D model of upper airway was reconstructed based on CT data. Velocity is accelerated by the reduced channel area, and vortex and recirculation region are observed in pre- and post-surgery models. For the post-surgery model, high pressure distribution is developed by significantly decreased hydraulic diameter, and the longitudinal flow stream is also interrupted.

Development of High Pressure & Temperature Constant Volume Chamber for Visualization Study of Fuel Spray and Combustion (연료 분무 및 연소 가시화 연구를 위한 고온 고압 정적 연소실 개발)

  • Kim, Kihyun
    • Journal of Power System Engineering
    • /
    • v.21 no.3
    • /
    • pp.12-18
    • /
    • 2017
  • Diesel and gasoline engines will be used as main power system of automobiles. Recently, engine downsizing is widely applied to both gasoline and diesel engines in order to improve fuel economy and exhaust emissions. Engine downsizing means small engine combustion chamber with higher combustion pressure. Therefore, spray and combustion process should be investigated under these high pressure and temperature conditions. In this study, constant volume combustion chamber which enables easy optical access from six directions was developed. Combustion chamber was designed to resist maximum pressure of 15 MPa and maximum temperature of 2,000 K. Combustible pre-mixed mixture was introduced into combustion chamber and ignited by spark plugs. High pressure and temperature were implemented by combustion of pre-mixed mixture. Three initial conditions of different pressure and density were tested. High repeatability of combustion process was implemented which was proven by low standard deviation of combustion pressure.

Effective visualization methods for a manufacturing big data system (제조 빅데이터 시스템을 위한 효과적인 시각화 기법)

  • Yoo, Kwan-Hee
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.6
    • /
    • pp.1301-1311
    • /
    • 2017
  • Manufacturing big data systems have supported decision making that can improve preemptive manufacturing activities through collection, storage, management, and predictive analysis of related 4M data in pre-manufacturing processes. Effective visualization of data is crucial for efficient management and operation of data in these systems. This paper presents visualization techniques that can be used to effectively show data collection, analysis, and prediction results in the manufacturing big data systems. Through the visualization technique presented in this paper, we have confirmed that it was not only easy to identify the problems that occurred at the manufacturing site, but also it was very useful to reply to these problems.

Research on Cyber IPB Visualization Method based on BGP Archive Data for Cyber Situation Awareness

  • Youn, Jaepil;Oh, Haengrok;Kang, Jiwon;Shin, Dongkyoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.2
    • /
    • pp.749-766
    • /
    • 2021
  • Cyber powers around the world are conducting cyber information-gathering activities in cyberspace, a global domain within the Internet-based information environment. Accordingly, it is imperative to obtain the latest information through the cyber intelligence preparation of the battlefield (IPB) process to prepare for future cyber operations. Research utilizing the cyber battlefield visualization method for effective cyber IPB and situation awareness aims to minimize uncertainty in the cyber battlefield and enable command control and determination by commanders. This paper designed architecture by classifying cyberspace into a physical, logical network layer and cyber persona layer to visualize the cyber battlefield using BGP archive data, which is comprised of BGP connection information data of routers around the world. To implement the architecture, BGP archive data was analyzed and pre-processed, and cyberspace was implemented in the form of a Di-Graph. Information products that can be obtained through visualization were classified for each layer of the cyberspace, and a visualization method was proposed for performing cyber IPB. Through this, we analyzed actual North Korea's BGP and OSINT data to implement North Korea's cyber battlefield centered on the Internet network in the form of a prototype. In the future, we will implement a prototype architecture based on Elastic Stack.

Visualization of Initial Flame Development in an SI Engine (스파크 점화 엔진에서 초기화염 발달의 가시화)

  • Ohm Inyong
    • Journal of the Korean Society of Visualization
    • /
    • v.2 no.2
    • /
    • pp.45-51
    • /
    • 2004
  • Initial flame development and propagation were visualized under different fuel injection timings to relate the initial flame development to the engine stability in a port injection SI engine. Experiments were performed in an optical single cylinder engine modified from a production engine and images were captured through the quartz window mounted in the piston by an intensified CCD camera. Stratification state was controlled by varying injection timing. Under each injection condition, the flame images were captured at the pre-set crank angles. These were averaged and processed to characterize the flame. The flame stability was estimated by the weighted average of flame area, luminosity, and standard deviation of flame area. Results show that stratification state according to injection timing did not affect on the direction of flame propagation. The flame development and the initial flame stability are strongly dependent on the stratified conditions and the initial flame stability governs the engine stability and lean misfire limit.

  • PDF

Analysis of Elementary Students' Visualization Process of Creative Problem Solving in Science (초등학생들의 창의적 과학 문제 해결 과정에서 나타나는 시각화 활동 분석)

  • Kim, Jisoo;Jang, Shinho
    • Journal of Korean Elementary Science Education
    • /
    • v.36 no.1
    • /
    • pp.73-84
    • /
    • 2017
  • Cultivating creativity is one of the goals in science education. Previous studies report that students use visualization while they solve the creative science problem and it looks helpful to make them think more. For this study three $6^{th}$ grade students were selected in the consideration of pre-test through the qualitative think-aloud method. The results show that even though students have many ideas in planning stage in problem solving, they appeared to visualize familiar and empirical ideas at first. So if teachers want to watch another creative ideas, they tended to give enough time to visualize many ideas. Students drew lines, circles, "X"marks to select or remove information during their problem solving works. They said these marks seem to be useful to understand question. However, removal marks sometimes turn out to block another chance to re-think. Also students did not have a chance to reflect what they did. It means that they lose the chance to do convergent thinking. The implications of this study include the importance of students' visualization works to facilitate their creative ideas and support their problem solving strategies. In this study, we discuss the meaningful messages for teachers who construct science classroom for creativity.

An Analysis and Visualization System for Ship Structural Intensity Using a General Purpose FEA Program (범용 유한요소해석 프로그램을 이용한 선박 진동인텐시티 해석 및 가시화 시스템)

  • Kim, Byung-Hee;Yi, Myung-Seok;Cho, Dae-Seung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.5 s.143
    • /
    • pp.487-492
    • /
    • 2005
  • The structural intensity analysis, which calculates vibration energy flow from vibratory velocity and internal force of a structure, can give information on sources' power, dominant transmission path and sink of vibration energy. In this study, we present a system for structural intensity analysis and visualization to apply for anti-vibration design of ship structures. The system calculates structural intensity from the results of forced vibration analysis and visualize the intensity using a general purpose finite element analysis program MSC/Nastran and its pre- and post-processor program. To demonstrate the analysis and visualization capability of the presented system, we show and discuss the results of structural intensity analysis for a cross-stiffened plate and a 70,500 OW crude oil tanker

Automatic detection of icing wind turbine using deep learning method

  • Hacıefendioglu, Kemal;Basaga, Hasan Basri;Ayas, Selen;Karimi, Mohammad Tordi
    • Wind and Structures
    • /
    • v.34 no.6
    • /
    • pp.511-523
    • /
    • 2022
  • Detecting the icing on wind turbine blades built-in cold regions with conventional methods is always a very laborious, expensive and very difficult task. Regarding this issue, the use of smart systems has recently come to the agenda. It is quite possible to eliminate this issue by using the deep learning method, which is one of these methods. In this study, an application has been implemented that can detect icing on wind turbine blades images with visualization techniques based on deep learning using images. Pre-trained models of Resnet-50, VGG-16, VGG-19 and Inception-V3, which are well-known deep learning approaches, are used to classify objects automatically. Grad-CAM, Grad-CAM++, and Score-CAM visualization techniques were considered depending on the deep learning methods used to predict the location of icing regions on the wind turbine blades accurately. It was clearly shown that the best visualization technique for localization is Score-CAM. Finally, visualization performance analyses in various cases which are close-up and remote photos of a wind turbine, density of icing and light were carried out using Score-CAM for Resnet-50. As a result, it is understood that these methods can detect icing occurring on the wind turbine with acceptable high accuracy.