• 제목/요약/키워드: Pre-trained Model

검색결과 286건 처리시간 0.024초

자동 뼈 연령 평가를 위한 비전 트랜스포머와 손 X 선 영상 분석 (Unleashing the Potential of Vision Transformer for Automated Bone Age Assessment in Hand X-rays)

  • 정경희;;;추현승
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.687-688
    • /
    • 2023
  • Bone age assessment is a crucial task in pediatric radiology for assessing growth and development in children. In this paper, we explore the potential of Vision Transformer, a state-of-the-art deep learning model, for bone age assessment using X-ray images. We generate heatmap outputs using a pre-trained Vision Transformer model on a publicly available dataset of hand X-ray images and show that the model tends to focus on the overall hand and only the bone part of the image, indicating its potential for accurately identifying the regions of interest for bone age assessment without the need for pre-processing to remove background noise. We also suggest two methods for extracting the region of interest from the heatmap output. Our study suggests that Vision Transformer holds great potential for bone age assessment using X-ray images, as it can provide accurate and interpretable output that may assist radiologists in identifying potential abnormalities or areas of interest in the X-ray image.

소형 임베디드 장치를 위한 경량 컨볼루션 모듈 기반의 검출 모델 (Lightweight Convolution Module based Detection Model for Small Embedded Devices)

  • 박찬수;이상훈;한현호
    • 융합정보논문지
    • /
    • 제11권9호
    • /
    • pp.28-34
    • /
    • 2021
  • 딥러닝을 이용한 객체 검출의 경우 정확도와 실시간성을 모두 요구한다. 그러나, 한정된 자원 환경에서는 수 많은 양의 데이터를 처리하는 딥러닝 모델을 사용하기 어렵다. 이러한 문제 해결을 위해 본 논문에서는 소형임베디드 장치를 위한 객체 검출을 모델을 제안하였다. 일반적인 검출 모델과 달리 사전 학습된 특징 추출기를 제거한 구조를 사용하여 모델 크기를 최소화하였다. 모델의 구조는 경량화된 컨볼루션 블록을 반복해서 쌓는 구조로 설계하였다. 또한, 검출 오버헤드를 줄이기 위해 영역 제안 횟수를 크게 줄였다. 제안하는 모델은 공개 데이터 셋인 PASCAL VOC를 사용하여 학습 및 평가하였다. 모델의 정량적 평가를 위해 검출 분야에서 사용하는 average precision으로 검출 성능을 측정하였다. 그리고 실제 임베디드 장치와 유사한 라즈베리 파이에서 검출 속도를 측정하였다. 실험을 통해 기존 검출 방법 대비 향상된 정확도와 빠른 추론 속도를 달성하였다.

딥러닝을 이용한 CT 영상에서 생체 공여자의 간 절제율 및 재생률 측정 (Measurements of the Hepatectomy Rate and Regeneration Rate Using Deep Learning in CT Scan of Living Donors)

  • 문새별;김영재;이원석;김광기
    • 대한의용생체공학회:의공학회지
    • /
    • 제43권6호
    • /
    • pp.434-440
    • /
    • 2022
  • Liver transplantation is a critical used treatment method for patients with end-stage liver disease. The number of cases of living donor liver transplantation is increasing due to the imbalance in needs and supplies for brain-dead organ donation. As a result, the importance of the accuracy of the donor's suitability evaluation is also increasing rapidly. To measure the donor's liver volume accurately is the most important, that is absolutely necessary for the recipient's postoperative progress and the donor's safety. Therefore, we propose liver segmentation in abdominal CT images from pre-operation, POD 7, and POD 63 with a two-dimensional U-Net. In addition, we introduce an algorithm to measure the volume of the segmented liver and measure the hepatectomy rate and regeneration rate of pre-operation, POD 7, and POD 63. The performance for the learning model shows the best results in the images from pre-operation. Each dataset from pre-operation, POD 7, and POD 63 has the DSC of 94.55 ± 9.24%, 88.40 ± 18.01%, and 90.64 ± 14.35%. The mean of the measured liver volumes by trained model are 1423.44 ± 270.17 ml in pre-operation, 842.99 ± 190.95 ml in POD 7, and 1048.32 ± 201.02 ml in POD 63. The donor's hepatectomy rate is an average of 39.68 ± 13.06%, and the regeneration rate in POD 63 is an average of 14.78 ± 14.07%.

실내 문화시설 안전을 위한 딥러닝 기반 방문객 검출 및 동선 추적에 관한 연구 (Deep Learning-based Approach for Visitor Detection and Path Tracking to Enhance Safety in Indoor Cultural Facilities)

  • 신원섭;노승민
    • Journal of Platform Technology
    • /
    • 제11권4호
    • /
    • pp.3-12
    • /
    • 2023
  • 포스트-코로나 시대에는 방역 조치의 중요성이 크게 강조되고 있으며, 이에 맞춰 딥러닝을 이용한 마스크 착용 상태 검출 및 다른 전염병 예방에 관련된 연구가 진행되고 있다. 그러나 질병 확산 방지를 위한 문화시설 관람객 탐지 및 추적 연구도 마찬가지로 중요하므로 이에 대한 연구가 진행되어야 한다. 본 논문에서는 사전 수집된 데이터 셋을 이용하여 컨볼루션 신경망 기반 객체 탐지 모델을 전이 학습시키고, 학습된 탐지 모델의 가중치를 다중 객체 추적 모델에 적용하여 방문객을 모니터링 한다. 방문객 탐지 모델은 Precision 96.3%, Recall 85.2% F1-Score 90.4%의 결과를 보여주었다. 추적 모델의 정량적 결과로 MOTA 65.6%, IDF1 68.3%. HOTA 57.2%의 결과를 보여주었으며, 본 논문의 모델과 다른 다중 객체 추적 모델 간의 정성적 비교에서 우수한 결과를 보여주었다. 본 논문의 연구는 포스트-코로나 시대의 문화시설 내 방역 시스템에 적용될 수 있을 것이다.

  • PDF

A Taekwondo Poomsae Movement Classification Model Learned Under Various Conditions

  • Ju-Yeon Kim;Kyu-Cheol Cho
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권10호
    • /
    • pp.9-16
    • /
    • 2023
  • 태권도 겨루기의 전자호구, 축구의 VAR 등 스포츠에서 기술 발전이 고도화되고 있다. 하지만 태권도 품새는 사람이 직접 자세를 눈으로 보고 판단하며 지도하기 때문에 때로는 대회의 현장에서 판정시비가 일어난다. 본 연구는 인공지능을 이용하여 태권도 동작을 더 정확하게 판단하고 평가할 수 있는 인공지능 모델을 제안한다. 본 연구에서는 촬영 및 수집한 데이터를 전처리한 후 학습, 테스트, 검증 세트로 분리한다. 분리한 데이터를 각 모델과 조건을 적용하여 학습한 후 비교하여 가장 좋은 성능의 모델을 제시한다. 각 조건의 모델은 정확도, Precision, Recall, F1-Score, 학습 소요 시간, Top-n error의 값을 비교하였고 그 결과 ResNet50과 Adam을 사용한 조건에서 학습한 모델의 성능이 가장 우수한 것으로 나타났다. 본 연구에서 제시한 모델을 활용하여 교육 현장이나 대회 등 다양한 방면에서 활용할 수 있을 것으로 기대한다.

Detecting Anomalies in Time-Series Data using Unsupervised Learning and Analysis on Infrequent Signatures

  • Bian, Xingchao
    • 전기전자학회논문지
    • /
    • 제24권4호
    • /
    • pp.1011-1016
    • /
    • 2020
  • We propose a framework called Stacked Gated Recurrent Unit - Infrequent Residual Analysis (SG-IRA) that detects anomalies in time-series data that can be trained on streams of raw sensor data without any pre-labeled dataset. To enable such unsupervised learning, SG-IRA includes an estimation model that uses a stacked Gated Recurrent Unit (GRU) structure and an analysis method that detects anomalies based on the difference between the estimated value and the actual measurement (residual). SG-IRA's residual analysis method dynamically adapts the detection threshold from the population using frequency analysis, unlike the baseline model that relies on a constant threshold. In this paper, SG-IRA is evaluated using the industrial control systems (ICS) datasets. SG-IRA improves the detection performance (F1 score) by 5.9% compared to the baseline model.

Multi-task learning with contextual hierarchical attention for Korean coreference resolution

  • Cheoneum Park
    • ETRI Journal
    • /
    • 제45권1호
    • /
    • pp.93-104
    • /
    • 2023
  • Coreference resolution is a task in discourse analysis that links several headwords used in any document object. We suggest pointer networks-based coreference resolution for Korean using multi-task learning (MTL) with an attention mechanism for a hierarchical structure. As Korean is a head-final language, the head can easily be found. Our model learns the distribution by referring to the same entity position and utilizes a pointer network to conduct coreference resolution depending on the input headword. As the input is a document, the input sequence is very long. Thus, the core idea is to learn the word- and sentence-level distributions in parallel with MTL, while using a shared representation to address the long sequence problem. The suggested technique is used to generate word representations for Korean based on contextual information using pre-trained language models for Korean. In the same experimental conditions, our model performed roughly 1.8% better on CoNLL F1 than previous research without hierarchical structure.

변환학습을 이용한 장면 분류 (The Combined Effect and Therapeutic Effects of Color)

  • 신성윤;신광성;남수태
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.338-339
    • /
    • 2021
  • 본 논문에서는 변환 학습을 기반으로 한 다중 클래스 이미지 장면 분류 방법을 제안한다. 이미지 분류를 위해 대형 이미지 데이터 세트 ImageNet에 대해 사전 학습 한 ResNet (ResNet) 모델을 사용하는 방법이다. CNN 모델의 이미지 분류 방법에 비해 분류 정확도 및 효율성을 크게 향상시킬 수 있다.

  • PDF

An Implementation of Effective CNN Model for AD Detection

  • Vyshnavi Ramineni;Goo-Rak Kwon
    • 스마트미디어저널
    • /
    • 제13권6호
    • /
    • pp.90-97
    • /
    • 2024
  • This paper focuses on detecting Alzheimer's Disease (AD). The most usual form of dementia is Alzheimer's disease, which causes permanent cause memory cell damage. Alzheimer's disease, a neurodegenerative disease, increases slowly over time. For this matter, early detection of Alzheimer's disease is important. The purpose of this work is using Magnetic Resonance Imaging (MRI) to diagnose AD. A Convolution Neural Network (CNN) model, Reset, and VGG the pre-trained learning models are used. Performing analysis and validation of layers affects the effectiveness of the model. T1-weighted MRI images are taken for preprocessing from ADNI. The Dataset images are taken from the Alzheimer's Disease Neuroimaging Initiative (ADNI). 3D MRI scans into 2D image slices shows the optimization method in the training process while achieving 96% and 94% accuracy in VGG 16 and ResNet 18 respectively. This study aims to classify AD from brain 3D MRI images and obtain better results.

Deep Learning based Rapid Diagnosis System for Identifying Tomato Nutrition Disorders

  • Zhang, Li;Jia, Jingdun;Li, Yue;Gao, Wanlin;Wang, Minjuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권4호
    • /
    • pp.2012-2027
    • /
    • 2019
  • Nutritional disorders are one of the most common diseases of crops and they often result in significant loss of agricultural output. Moreover, the imbalance of nutrition element not only affects plant phenotype but also threaten to the health of consumers when the concentrations above the certain threshold. A number of disease identification systems have been proposed in recent years. Either the time consuming or accuracy is difficult to meet current production management requirements. Moreover, most of the systems are hard to be extended, only detect a few kinds of common diseases with great difference. In view of the limitation of current approaches, this paper studies the effects of different trace elements on crops and establishes identification system. Specifically, we analysis and acquire eleven types of tomato nutritional disorders images. After that, we explore training and prediction effects and significances of super resolution of identification model. Then, we use pre-trained enhanced deep super-resolution network (EDSR) model to pre-processing dataset. Finally, we design and implement of diagnosis system based on deep learning. And the final results show that the average accuracy is 81.11% and the predicted time less than 0.01 second. Compared to existing methods, our solution achieves a high accuracy with much less consuming time. At the same time, the diagnosis system has good performance in expansibility and portability.