• 제목/요약/키워드: Pre-peak cyclic shear

검색결과 2건 처리시간 0.016초

Experimental and numerical study on pre-peak cyclic shear mechanism of artificial rock joints

  • Liu, Xinrong;Liu, Yongquan;Lu, Yuming;Kou, Miaomiao
    • Structural Engineering and Mechanics
    • /
    • 제74권3호
    • /
    • pp.407-423
    • /
    • 2020
  • The pre-peak cyclic shear mechanism of two-order asperity degradation of rock joints in the direct shear tests with static constant normal loads (CNL) are investigated using experimental and numerical methods. The laboratory testing rock specimens contains the idealized and regular two-order triangular-shaped asperities, which represent the specific geometrical conditions of natural and irregular waviness and unevenness of rock joint surfaces, in the pre-peak cyclic shear tests. Three different shear failure patterns of two-order triangular-shaped rock joints can be found in the experiments at constant horizontal shear velocity and various static constant normal loads in the direct and pre-peak cyclic shear tests. The discrete element method is adopted to simulate the pre-peak shear failure behaviors of rock joints with two-order triangular-shaped asperities. The rock joint interfaces are simulated using a modified smooth joint model, where microscopic scale slip surfaces are applied at contacts between discrete particles in the upper and lower rock blocks. Comparing the discrete numerical results with the experimental results, the microscopic bond particle model parameters are calibrated. Effects of cyclic shear loading amplitude, static constant normal loads and initial waviness asperity angles on the pre-peak cyclic shear failure behaviors of triangular-shaped rock joints are also numerically investigated.

Seismic response analysis of RC frame core-tube building with self-centering braces

  • Xu, Long-He;Xiao, Shui-Jing;Lu, Xiao
    • Structural Monitoring and Maintenance
    • /
    • 제5권2호
    • /
    • pp.189-204
    • /
    • 2018
  • This paper examines the seismic responses of a reinforced concrete (RC) frame core-tube building with pre-pressed spring self-centering energy dissipation (PS-SCED) braces. The PS-SCED brace system consists of friction devices for energy dissipation, pre-pressed combination disc springs for self-centering and tube members as guiding elements. A constitutive model of self-centering flag-shaped hysteresis for PS-SCED brace is developed to better simulate the seismic responses of the RC frame core-tube building with PS-SCED braces, which is also verified by the tests of two braces under low cyclic reversed loading. Results indicate that the self-centering and energy dissipation capabilities are well predicted by the proposed constitutive model of the PS-SCED brace. The structure with PS-SCED braces presents similar peak story drift ratio, smaller peak acceleration, smaller base shear force and much smaller residual deformations as compared to the RC frame core-tube building with bucking-restrained braces (BRBs).