• 제목/요약/키워드: Pre-oxidation

검색결과 246건 처리시간 0.022초

Cu,Zn-Superoxide Dismutase Is an Intracellular Catalyst for the H2O2-dependent Oxidation of Dichlorodihydrofluorescein

  • Kim, Young-Mi;Lim, Jung-Mi;Kim, Byung-Chul;Han, Sanghwa
    • Molecules and Cells
    • /
    • 제21권1호
    • /
    • pp.161-165
    • /
    • 2006
  • Dichlorodihydrofluorescein ($DCFH_2$) is a widely used probe for intracellular $H_2O_2$. However, $H_2O_2$ can oxidize $DCFH_2$ only in the presence of a catalyst, whose identity in cells has not been clearly defined. We compared the peroxidase activity of Cu,Zn-superoxide dismutase (CuZnSOD), cytochrome c, horseradish peroxidase (HRP), $Cu^{2+}$, and $Fe^{3+}$ under various conditions to identify an intracellular catalyst. Enormous increase by bicarbonate in the rate of $DCFH_2$ oxidation distinguished CuZnSOD from cytochrome c and HRP. Cyanide inhibited the reaction catalyzed by CuZnSOD but accelerated that by $Cu^{2+}$ and $Fe^{3+}$. Oxidation of $DCFH_2$ by $H_2O_2$ in the presence of a cell lysate was also enhanced by bicarbonate and inhibited by cyanide. Confocal microscopy of $H_2O_2$-treated cells showed enhanced DCF fluorescence in the presence of bicarbonate and attenuated fluorescence for the cells pre-incubated with KCN. Moreover, DCF fluorescence was intensified in CuZnSOD-transfected HaCaT and RAW 264.7 cells. We propose that CuZnSOD is a potential intracellular catalyst for the $H_2O_2$-dependent oxidation of $DCFH_2$.

과망간산칼륨 용액에서 화학적으로 형성된 AZ31B 마그네슘 합금의 피막 특성평가 (Characteristics of Films Formed on AZ31B Magnesium Alloy by Chemical Oxidation Process in Potassium Permanganate Solution)

  • 김민정;김형찬;윤석영;정우창
    • 한국표면공학회지
    • /
    • 제44권2호
    • /
    • pp.44-49
    • /
    • 2011
  • The films formed on AZ31B magnesium alloy were prepared from alkaline solution composed of potassium permanganate and sodium hydroxide. The immersion tests were carried out at the different concentration of sodium hydroxide and pre-treatment method in 5 minute. The morphology and the phase composition of the film were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The corrosion behavior of the film in 5.0% NaCl solution was evaluated using potentiodyanmic polarization. Open circuit potential in developing film was examined with time. The thin and transparent film was mainly composed of MgO and $Mg(OH)_2$. The film with the best corrosion resistance was obtained at $70^{\circ}C$ bath temperature, 1.6 M concentration of sodium hydroxide and chemical pre-treatment.

과산화수소에 의한 산화가 핏치계 활성탄소의 기공성질에 미치는 영향 (Effect of Pre-oxidation of Pitch by H2O2 on Porosity of Activated Carbons)

  • 김영하;박수진
    • 공업화학
    • /
    • 제21권2호
    • /
    • pp.183-187
    • /
    • 2010
  • 본 연구에서 $H_2O_2$에 의한 pitch의 산화처리가 KOH 활성화에 미치는 영향에 관하여 고찰하였다. 산화 처리의 영향을 고려하기 위하여 KOH/pitch 중량비를 3으로 고정하였으며, 1073 K에서 2 h 동안 활성화하였고, $H_2O_2$의 농도를 각각 5, 15, 25 wt%로 달리하여 시편을 제조하였다. 산화처리된 pitch와 이를 전구체로 하여 제조한 활성탄소의 물리화학적 특성은 XRD, FT-IR, XPS, $N_2$ 흡착 및 SEM을 이용하여 분석하였다. XRD 결과로부터 $H_2O_2$ 처리가 (002) 면의 층간거리를 증가시켰으며, FT-IR과 XPS로부터 표면의 carboxyl group 및 hydroxyl group 등의 산소 작용기가 도입되었음을 확인하였다. Pitch로 제조된 활성탄소의 비표면적은 $H_2O_2$ 산화처리에 의해 급격히 상승하였고, $H_2O_2$의 농도를 증가시킬수록 상승폭이 더욱 증가하여 25 wt% $H_2O_2$ 처리시 최대 $2111m^2/g$의 비표면적을 갖는 활성탄소를 제조할 수 있었다.

정전 분무 공정으로 제조된 Fe-Cr-Al 분말 다공체 금속의 고온 산화 특성에 미치는 기공 크기의 영향 (Effect of Cell Size on the High Temperature Oxidation Properties of Fe-Cr-Al Powder Porous Metal Manufactured by Electro-spray Process)

  • 오재성;공영민;김병기;이기안
    • 한국분말재료학회지
    • /
    • 제21권1호
    • /
    • pp.55-61
    • /
    • 2014
  • Fe-Cr-Al powder porous metal was manufactured by using new electro-spray process. First, ultra-fine fecralloy powders were produced by using the submerged electric wire explosion process. Evenly distributed colloid (0.05~0.5% powders) was dispersed on Polyurethane foam through the electro-spray process. And then degreasing and sintering processes were conduced. In order to examine the effect of cell size ($200{\mu}m$, $450{\mu}m$, $500{\mu}m$) in process, pre-samples were sintered for two hours at temperature of $1450^{\circ}C$, in $H_2$ atmospheres. A 24-hour thermo gravimetric analysis test was conducted at $1000^{\circ}C$ in a 79% $N_2$ + 21% $O_2$ to investigate the high temperature oxidation behavior of powder porous metal. The results of the high temperature oxidation tests showed that oxidation resistance increased with increasing cell size. In the $200{\mu}m$ porous metal with a thinner strut and larger specific surface area, the depletion of the stabilizing elements such as Al and Cr occurred more quickly during the high-temperature oxidation compared with the 450, $500{\mu}m$ porous metals.

Dimethyl methylphosphonate(DMMP)의 초임계수 산화반응 (Supercritical water oxidation of Dimethyl methylphosphonate(DMMP))

  • 이해완;류삼곤;이종철;홍대식
    • Korean Chemical Engineering Research
    • /
    • 제44권6호
    • /
    • pp.636-643
    • /
    • 2006
  • 연속식 SCWO 반응기를 이용하여 DMMP의 초임계수 산화반응을 반응온도 $440{\sim}540^{\circ}C$, 반응압력 242 bar, 체류시간 10~26 초, 과잉산소량 -40~200%의 조건 하에서 수행하였다. 반응온도 $540^{\circ}C$에서 DMMP 분해율은 99.7% 이상으로 높았으며, DMMP의 농도가 증가함에 따라 DMMP 분해율은 증가하였다. 산화제 농도 변화에 따른 분해율은 양론비 이하에서는 현저하게 영향을 받았으나, 양론비 이상에서는 큰 차이가 없었다. DMMP 분해율이 85% 이상인 30개의 실험결과로부터 DMMP의 초임계수 산화반응 속도식을 도출하였다. Pre-exponential factor는 $(1.10{\pm}0.76){\times}10^6$, 반응 활성화에너지는 $90.66{\pm}3.87kJ/mol$, DMMP와 산소에 대한 반응차수는 각각 $1.02{\pm}0.03$, $0.32{\pm}0.03$로 모델에 의한 예측값과 실험값은 잘 일치하였다.

무전해 Ni-B 도금을 이용한 플라즈마 디스플레이 버스 전극용 확산방지막의 열처리 영향 (Effect of Heat Treatment of the Diffusion Barrier for Bus Electrode of Plasma Display by Electroless Ni-B Deposition)

  • 최재웅;황길호;홍석준;강성군
    • 한국재료학회지
    • /
    • 제14권8호
    • /
    • pp.552-557
    • /
    • 2004
  • Thin Ni-B films, 1 ${\mu}m$ thick, were electrolessly deposited on Cu bus electrode fabricated by electro deposition. The purpose of these films is to encapsulate Cu electrodes for preventing Cu oxidation and to serve as a diffusion barrier against copper contamination of dielectric layer in AC-plasma display panel. The layers were heat treated at $580^{\circ}C$(baking temperature of dielectric layer) with and without pre-annealing at $300^{\circ}C$($Ni_{3}B$ formation temperature) for 30 minutes. In the layer with pre-annealing, amount of Cu diffusion was lower about 5 times than that in the layer without pre-annealing. The difference of Cu concentration could be attributed to Cu diffusion before $Ni_{3}B$ formation at grain boundaries. However, the diffusion behavior of the layer with pre-annealing was similar to that of the layer without pre-annealing after $Ni_{3}B$ formation. With increasing annealing time, Cu concentration of both layers increased due to grain growth.

Effect of Pre-rigor Salting Levels on Physicochemical and Textural Properties of Chicken Breast Muscles

  • Kim, Hyun-Wook;Hwang, Ko-Eun;Song, Dong-Heon;Kim, Yong-Jae;Ham, Youn-Kyung;Yeo, Eui-Joo;Jeong, Tae-Jun;Choi, Yun-Sang;Kim, Cheon-Jei
    • 한국축산식품학회지
    • /
    • 제35권5호
    • /
    • pp.577-584
    • /
    • 2015
  • This study was conducted to evaluate the effect of pre-rigor salting level (0-4% NaCl concentration) on physicochemical and textural properties of pre-rigor chicken breast muscles. The pre-rigor chicken breast muscles were de-boned 10 min post-mortem and salted within 25 min post-mortem. An increase in pre-rigor salting level led to the formation of high ultimate pH of chicken breast muscles at post-mortem 24 h. The addition of minimum of 2% NaCl significantly improved water holding capacity, cooking loss, protein solubility, and hardness when compared to the non-salting chicken breast muscle (p<0.05). On the other hand, the increase in pre-rigor salting level caused the inhibition of myofibrillar protein degradation and the acceleration of lipid oxidation. However, the difference in NaCl concentration between 3% and 4% had no great differences in the results of physicochemical and textural properties due to pre-rigor salting effects (p>0.05). Therefore, our study certified the pre-rigor salting effect of chicken breast muscle salted with 2% NaCl when compared to post-rigor muscle salted with equal NaCl concentration, and suggests that the 2% NaCl concentration is minimally required to ensure the definite pre-rigor salting effect on chicken breast muscle.

Effect of sea tangle extract on the quality characteristics of reduced-salt, low-fat sausages using pre-rigor muscle during refrigerated storage

  • Geon Ho Kim;Koo Bok Chin
    • Animal Bioscience
    • /
    • 제36권11호
    • /
    • pp.1738-1746
    • /
    • 2023
  • Objective: The aim of this study was to investigate quality characteristics of reduced-salt, low-fat pork sausage (PS) using pre-rigor muscle and sea tangle extract (STE) to reduce salt level of sausages during refrigerated storage. Methods: Pork ham was prepared with pre-rigor and post-rigor muscle from the local market. Sausages using post-rigor muscle were manufactured with the 1.5% of salt content, and samples with pre-rigor muscle were processed by different salt concentrations (0.8%). Accordingly, PSs were prepared in 4 treatments (REF, PS with 1.5% of salt using post-rigor muscle; CTL, PS with 0.8% of salt using pre-rigor muscle; TRT1, PS with 0.8% of salt and 5% of STE using pre-rigor muscle; TRT2, PS with 0.8% of salt and 10% of STE using pre-rigor muscle). For the evaluation of quality characteristics and shelf-life of reduced-salt PS, pH and color values, cooking loss (%), expressible moisture (%), textural properties, lipid oxidation (thiobarbituric reactive substances), protein denaturation (volatile basic nitrogen), and microbiological analysis (total plate counts and Enterobacteriaceae counts) were determined. Results: The pH and temperature of pre-rigor raw pork ham were higher than those of post-rigor pork ham. Hardness of TRT2 was higher than that of REF or CTL. TRT2 had higher gumminess and chewiness than CTL. TRT1 and TRT2 had lower volatile basic nitrogen than CTL. Total plate counts of TRT2 were lower than those of CTL. Expressible moisture values of TRT1 and TRT2 were similar to those of REF. The addition of STE into PS improved functional properties and shelf-life of PS. Conclusion: Reduced-salt PS containing pre-rigor muscle and STE had similar functional properties to those of regular-salt ones, while containing approximately 47% less salt compared to regular-salt level.

소규모 쓰레기 매립장 침출수의 효율적인 처리 방안에 관한 연구 (Effective Treatment System for the Leachate from a Small-Scale Municipal Waste Landfill)

  • 조영하;권재현
    • 한국환경보건학회지
    • /
    • 제28권1호
    • /
    • pp.51-65
    • /
    • 2002
  • This study was carried out to apply some basic physical and chemical treatment options including Fenton's oxidation, and to evaluate the performances and the characteristics of organic and nitrogen removal using lab-scale biological treatment system such as complete-mixing activated sludge and sequencing batch reactor(SBR) processes for the treatment of leachate from a municipal waste landfill in Gyeongnam province. The results were as follows: Chemical coagulation experiments using aluminium sulfate, ferrous sulfate and ferric chloride resulted in leachate CO $D_{Cr}$ removal of 32%, 23% and 21 % with optimum reaction dose ranges of 10,000~15,000 mg/$\ell$, 1,000 mg/$\ell$ and 500~2,000 mg/$\ell$, respectively. Fenton's oxidation required the optimum conditions including pH 3.5, 6 hours of reaction time, and hydrogen peroxide and ferrous sulfate concentrations of 2,000 ~ 3,000 mg/$\ell$ each with 1:1 weight ratio to remove more than 50% of COD in the leachate containing CO $D_{Cr}$ between 2,000 ~ 3,000 mg/$\ell$. Air-stripping achieved to remove more than 97% of N $H_3$-N in the leachate in spite of requiring high cost of chemicals and extensive stripping time, and, however, zeolite treatment removing 94% of N $H_3$-N showed high selectivity to N $H^{+}$ ion and much faster removal rate than air-stripping. The result from lab-scale experiment using a complete-mixing activated sludge process showed that biological treatability tended to increase more or less as HRT increased or F/M ratio decreased, and, however, COD removal efficiency was very poor by showing only 36% at HRT of 29 days. While COD removal was achieved more during Fenton's oxidation as compared to alum treatment for the landfill leachate, the ratio of BOD/COD after Fenton's oxidation considerably increased, and the consecutive activated sludge process significantly reduced organic strength to remove 50% of CO $D_{Cr}$ and 95% of BO $D_{5}$ . The SBR process was generally more capable of removing organics and nitrogen in the leachate than complete-mixing activated sludge process to achieve 74% removal of influent CO $D_{Cr}$ , 98% of BO $D_{5}$ and especially 99% of N $H_3$-N. However, organic removal rates of the SBR processes pre-treated with air-stripping and with zeolite were not much different with those without pre-treatment, and the SBR process treated with powdered activated carbon showed a little higher rate of CO $D_{Cr}$ removal than the process without any treatment. In conclusion, the biological treatment process using SBR proved to be the most applicable for the treatment of organic contents and nitrogen simultaneously and effectively in the landfill leachate.e.

Effects of Pre-reducing Sb-Doped SnO2 Electrodes in Viologen-Anchored TiO2 Nanostructure-Based Electrochromic Devices

  • Cho, Seong Mok;Ah, Chil Seong;Kim, Tae-Youb;Song, Juhee;Ryu, Hojun;Cheon, Sang Hoon;Kim, Joo Yeon;Kim, Yong Hae;Hwang, Chi-Sun
    • ETRI Journal
    • /
    • 제38권3호
    • /
    • pp.469-478
    • /
    • 2016
  • In this paper, we investigate the effects of pre-reducing Sb-doped $SnO_2$ (ATO) electrodes in viologen-anchored $TiO_2$ (VTO) nanostructure-based electrochromic devices. We find that by pre-reducing an ATO electrode, the operating voltage of a VTO nanostructure-based electrochromic device can be lowered; consequently, such a device can be operated more stably with less hysteresis. Further, we find that a pre-reduction of the ATO electrode does not affect the coloration efficiency of such a device. The aforementioned effects of a pre-reduction are attributed to the fact that a pre-reduced ATO electrode is more compatible with a VTO nanostructure-based electrochromic device than a non-pre-reduced ATO electrode, because of the initial oxidized state of the other electrode of the device, that is, a VTO nanostructure-based electrode. The oxidation state of a pre-reduced ATO electrode plays a very important role in the operation of a VTO nanostructure-based electrochromic device because it strongly influences charge movement during electrochromic switching.