• Title/Summary/Keyword: Pre-chamber

Search Result 164, Processing Time 0.025 seconds

Configuration Design, Hot-firing Test and Performance Evaluation of 200 N-Class GCH4/LOx Small Rocket Engine (Part I: A Preliminary Design and Test Apparatus) (200 N급 GCH4/LOx 소형로켓엔진의 형상설계와 성능시험평가 (Part I: 예비설계와 시험장치))

  • Kim, Young Jin;Kim, Min Cheol;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • In this study, a configuration design of a CH4/LOx small rocket engine was made and test system was established for the performance evaluation. A coaxial swirl injector was chosen because of its remarkable atomization performance and low combustion instability. Three aspect ratios for the combustion chamber configuration, i.e., 1.5, 1.8, and 2.1 were also set for the comparison of the combustion efficiency. The reliability of the thrust measurement rig was enhanced by pre-and post-calibration process. From the preliminary ground hot-firing test, the measured thrust and specific impulse values were 89.2 N and 181.8 s, respectively, which were 21.6% lower than the ideal values. In addition, the efficiency of characteristic velocity was measured as 84.2%.

Pre-harvest Sprouting Tolerance Test in Rice with Floury Endosperm

  • Su Kyung Ha;Seo Ho Shin;Hyun-Sook Lee;Chang-Min Lee;Seung Young Lee;Jae-Ryoung Park;Ji-Ung Jeung
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.213-213
    • /
    • 2022
  • Pre-harvest sprouting(PHS) refers to germinating seeds in the mother plant before harvesting under low dormancy and humid climate, deteriorating grain quality, and rice yield. Rice varieties with floury endosperm(RFE) have been developed to boost domestic rice consumption by invigorating the processed rice industry, reducing milling and environmental cost. However, the PHS tolerance of RFE is relatively low in the rice varieties with transparent endosperm(RTE) since they soak moisture rapidly due to soft endosperm. In this study, Baromi2(BR2), floury endosperm, and Jomyeong1(JM1), PHS tolerance donor, were crossed to improve PHS tolerance. Major agronomic traits and PHS tolerance test of ten F7(BR2/JM1) lines were conducted in NICS, 2022. The evaluations of PHS were carried out according to the method of RDA(2012) with slight modifications. Briefly, three panicles were treated and incubated 25℃ in a growth chamber 35 days after the heading date. Ten PHS tolerance promising lines demonstrated floury endosperm. The heading date of BR2 and JM1 was 7/27 and 8/5, respectively. The heading date of promising lines was 7/23~8/10. The PHS rate of BR2 and JM1 exhibited 56.3% and 10.7%, respectively. However, the PHS rate often promising lines demonstrated 2.4%~52.4%, 3 lines significantly lower than BR2. Further studies such as ABA contents are necessary to elucidate the mechanism of PHS tolerance in BR2/JM1. These results may contribute to developing elite RFE lines with improved PHS tolerance.

  • PDF

Chloride penetration in anchorage concrete of suspension bridge during construction stage

  • Yang, In-Hwan;Yoon, Yong-Sik;Kwon, Seung-Jun
    • Advances in concrete construction
    • /
    • v.10 no.1
    • /
    • pp.13-20
    • /
    • 2020
  • Steel corrosion in embedded steel causes a significant durability problems and this usually propagates to structural degradation. Large-scaled concrete structures, PSC (Pre-stressed Concrete) or RC (Reinforced Concrete) structures, are usually constructed with mass concrete and require quite a long construction period. When they are located near to sea shore, chloride ion penetrates into concrete through direct or indirect exposure to marine environment, and this leads durability problems. Even if the structures are sheltered from chloride ingress outside after construction, the chloride contents which have been penetrated into concrete during the long construction period are differently evaluated from the initially mixed chloride content. In the study, chloride profiles in cores extracted from anchorage concrete block in two large-scaled suspension bridge (K and P structure) are evaluated considering the exposure periods and conditions. Total 21 cores in tendon room and chamber room were obtained, and the acid-soluble chlorides and compressive strength were evaluated for the structures containing construction period around 3 years. The test results like diffusion coefficient and surface chloride content from the construction joint and cracked area were also discussed with the considerations for maintenance.

Application of computer vision for rapid measurement of seed germination

  • Tran, Quoc Huy;Wakholi, Collins;Cho, Byoung-Kwan
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.154-154
    • /
    • 2017
  • Root is an important organ of plant that typically lies below the surface of the soil. Root surface determines the ability of plants to absorb nutrient and water from the surrounding soil. This study describes an application of image processing and computer vision which was implemented for rapid measurement of seed germination such as root length, surface area, average diameter, branching points of roots. A CCD camera was used to obtain RGB image of seed germination which have been planted by wet paper in a humidity chamber. Temperature was controlled at approximately 250C and 90% relative humidity. Pre-processing techniques such as color space, binarized image by customized threshold, removal noise, dilation, skeleton method were applied to the obtained images for root segmentation. The various morphological parameters of roots were estimated from a root skeleton image with the accuracy of 95% and the speed of within 10 seconds. These results demonstrated the high potential of computer vision technique for the measurement of seed germination.

  • PDF

CHARACTERISTICS OF WALL IMPINGEMENT AT ELEVATED TEMPERATURE CONDITIONS ON GDI SPRAY

  • Park, J.;Im, K.S.;Kim, H.;Lai, M.C.
    • International Journal of Automotive Technology
    • /
    • v.5 no.3
    • /
    • pp.155-164
    • /
    • 2004
  • The direct injection gasoline spray-wall interaction was characterized inside a heated pressurized chamber using various visualization techniques, including high-speed laser-sheet macroscopic and microscopic movies up to 25,000 frames per second, shadowgraph, and double-spark particle image velocimetry. Two hollow cone high-pressure swirl injectors having different cone angles were used to inject gasoline onto a heated plate at two different impingement angles. Based on the visualization results, the overall transient spray impingement structure, fuel film formation, and preliminary droplet size and velocity were analyzed. The results show that upward spray vortex inside the spray is more obvious at elevated temperature condition, particularly for the wide-cone-angle injector, due to the vaporization of small droplets and decreased air density. Film build-up on the surface is clearly observed at both ambient and elevated temperature, especially for narrow cone spray. Vapor phase appears at both ambient and elevated temperature conditions, particularly in the toroidal vortex and impingement plume. More rapid impingement and faster horizontal spread after impingement are observed for elevated temperature conditions. Droplet rebounding and film break-up are clearly observed. Post-impingement droplets are significantly smaller than pre-impingement droplets with a more horizontal velocity component regardless of the wall temperature and impingement angle condition.

Ion beam induced surface modifications of sapphire and gold film deposition: studies on the adhesion enhancement and mechanisms (Ion Beam을 이용한 사파이어($Al_2O_3$) 표면개질 및 금(Au) 박막증착: 접합성 향상 및 접학기구에 대한 연구)

  • 박재원;이광원;이재형;최병호
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.4B
    • /
    • pp.514-518
    • /
    • 1999
  • Gold (Au) is not supposed to react with sapphire(single crystalline ) under thermodynamic equillibrium, therefore, a strong adhesion between these two dissimilar materials is not expected. However, pull test showed that the gold film sputter-deposited onto annealed and pre-sputtered sapphire exhibited very strong adhesion even without post-deposition annealing. Strongly and weakly adhered samples as a result of the pull testing were selected to investigate the adhesion mechanisms with Auger electron spectroscopy. The Au/ interfaces were analyzed using a new technique that probes the interface on the film using Auger electron escape depth. It revealed that one or two monolayers of Au-Al-O compound formed at the Au/Sapphire interface when AES in the UHV chamber. It showed that metallic aluminum was detected on the surface of sapphire substrates after irradiating for 3 min. with 7keV Ar+ -ions. These results agree with TRIM calculations that yield preferential ion-beam etching. It is concluded that the formation of Au-Al-O compound, which is responsible for the strong metal-ceramic bonding, is due to ion-induced cleaning and reduction of the sapphire surface, and the kinetic energy of depositing gold atoms, molecules, and micro-particles as a driving force for the inter-facial reaction.

  • PDF

An Investigation on Spray Characteristics of Diesel - DME with Change of Injection Pressure (분사압력 변화에 따른 디젤-DME연료의 다단분사 특성에 관한연구)

  • Jeong, Y.H.;Yang, J.W.;Oh, C.H.;Lim, O.T.
    • Journal of ILASS-Korea
    • /
    • v.18 no.4
    • /
    • pp.188-195
    • /
    • 2013
  • An investigation on spray characteristics of fuels which diesel and di-methyl ether (DME) with change of injection pressure used the multi-injection in constant volume combustion chamber (CVCC). Diesel was already used famous fuel which we could use. DME showed similar features with diesel like as cetane number, auto-ignition temperature. High cetane number of diesel and DME could make possible to compression ignition. DME showed different atomization from diesel due to evaporating pressures and boiling points. Experiments were carried out in CVCC equipped with Delphi solenoid 6-hole type injector and the spray characteristics of diesel and DME were tested the various pre and pilot injection. Terms of injections and a number of injections in multi-injection has been controlled. Experiments were performed in 2 types that 1500 rpm, 2000 rpm and under the condition of injection ranging from 100 bar to 500 bar. From the results of this experiment diesel showed longer spray penetration than DME. That result showed different of atomization speed DME and diesel. Result of high injection pressure condition showed similar spray characteristics diesel and DME. After this investigation, new conditions and experiments using laser light to go forward and add the fuels like as the biodiesel and diesel and DME blend.

Field Feasibility Study of an Eddy Current Testing System for Steam Generator Tubes of Nuclear Power Plant (원전 증기발생기 와전류검사 시스템 현장적용 연구)

  • Moon, Gyoon-Young;Lee, Tae-Hun;Kim, In-Chul
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.11 no.2
    • /
    • pp.13-19
    • /
    • 2015
  • Steam generator is one of the most important component of nuclear power plant, and it's integrity and reliability are to be assured to high level by pre-service inspection and in-service inspection. To improve the reliability of steam generator heat exchanger tubes and to secure the management of nuclear power plant safely, KHNP CRI recently has developed eddy current testing system for steam generator. KHNP CRI have performed a series of experimental verification and field application to confirm the performance of the developed ECT system in accordance with ASME Code requirements. The ECT system consists of a remote data acquisition unit, an ECT signal acquisition and analysis software, a water chamber robot controller and a probe push-puller. In this paper, we will details of the developed ECT system and the software and their experimental performance. And also we will report the field applying performance and the issues for further steps.

The Study for Designs of Lean-Premixed low NOx Combustor (희박-예혼합 저 NOx 연소기 설계에 대한 연구)

  • Lim, Am-Ho;Kim, Han-Suck;Ann, Kuk-Young;Lee, Sang-Min;Kim, Yong-Mo
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.83-88
    • /
    • 2003
  • The concept of lean-premixed combustion in gas turbine combustor operation has become a standard in recent years as an effective means to meet stringent environmental standards on NOx emissions. Various types of air-fuel premixer, which affect greatly NOx emission and stability of lean-premixed low NOx combustor, were investigated experimentally to reduce the NOx emission. One type of the premixers is selected by experiments and applied it to 70kW class lean-premixed gas turbine combustor. The exit temperature and emissions of CO and NOx were measured with equivalence ratios at ambient pressure. From the results, the emissions of CO and NOx were influenced by the type of air-fuel premixer. As the mixing length of air and fuel is longer, the NOx and CO emission were decreased in the primary reaction zone. Compared with of conventional combustor, the lean-premixed low NOx combustor has low NOx emission characteristics.

  • PDF

Optical Characteristics of Oxygen-doped ZnTe Thin Films Deposited by Magnetron Sputtering Method

  • Kim, Seon-Pil;Pak, Sang-Woo;Kim, Eun-Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.253-253
    • /
    • 2011
  • ZnTe semiconductor is very attractive a material for optoelectronic devices in the visible green spectral region because of it has direct bandgap of 2.26 eV. The prototypes of ZnTe light emitting diodes (LEDs) have been reported [1], showing that their green emission peak closely matches the most sensitive region of the human eye. The optoelectronic properties of ZnTe:O film allow to expect a large optical gain in the intermediate emission band, which emission band lies about 0.4-0.6 eV below the conduction band of ZnTe [2]. So, the ZnTe system is useful for the production of high-efficiency multi-junction solar cells [2,3]. In this work, the ZnTe:O thin films were deposited on Al2O3 substrates by using the radio frequency magnetron sputtering system. Three sets of samples were prepared using argon and oxygen as the sputtering gas. The deposition chamber was pre-pumped down to a base pressure of 10-7 Torr before introducing gas. The deposition pressure was fixed at 10-3 Torr throughout this work. During the ZnTe deposition, the substrate temperature was 300 oC. The optical properties were also investigated by using the ultraviolte-visible (UV-Vis) spectrophotometer.

  • PDF