• Title/Summary/Keyword: Pre-SAFE(Prediction-SAFE)

Search Result 12, Processing Time 0.019 seconds

Verification of Ground Subsidence Risk Map Based on Underground Cavity Data Using DNN Technique (DNN 기법을 활용한 지하공동 데이터기반의 지반침하 위험 지도 작성)

  • Han Eung Kim;Chang Hun Kim;Tae Geon Kim;Jeong Jun Park
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.2
    • /
    • pp.334-343
    • /
    • 2023
  • Purpose: In this study, the cavity data found through ground cavity exploration was combined with underground facilities to derive a correlation, and the ground subsidence prediction map was verified based on the AI algorithm. Method: The study was conducted in three stages. The stage of data investigation and big data collection related to risk assessment. Data pre-processing steps for AI analysis. And it is the step of verifying the ground subsidence risk prediction map using the AI algorithm. Result: By analyzing the ground subsidence risk prediction map prepared, it was possible to confirm the distribution of risk grades in three stages of emergency, priority, and general for Busanjin-gu and Saha-gu. In addition, by arranging the predicted ground subsidence risk ratings for each section of the road route, it was confirmed that 3 out of 61 sections in Busanjin-gu and 7 out of 68 sections in Sahagu included roads with emergency ratings. Conclusion: Based on the verified ground subsidence risk prediction map, it is possible to provide citizens with a safe road environment by setting the exploration section according to the risk level and conducting investigation.

Dissipation Pattern of Boscalid in Cucumber under Greenhouse Condition (시설 내 오이 재배 중 살균제 Boscalid의 잔류특성)

  • Lee, Jong-Hwa;Park, Hee-Won;Keum, Young-Soo;Kwon, Chan-Hyeok;Lee, Young-Deuk;Kim, Jeong-Han
    • The Korean Journal of Pesticide Science
    • /
    • v.12 no.1
    • /
    • pp.67-73
    • /
    • 2008
  • The dissipation patterns of a boscalid in cucumber under greenhouse condition was investigated to establish pre-harvest residue limit (PHRL) and biological half-life. Initial concentration of boscalid in cucumber at standard application rate was $7.29\;mg\;kg^{-1}$ and decreased to $0.04\;mg\;kg^{-1}$ after 15 days with half-life of 1.9 day, while the initial concentration was $14.69\;mg\;kg^{-1}$ and decreased to $0.11\;mg\;kg^{-1}$ after same period with half lift of 2.0 day at double application rate. PHRL was suggested by prediction curve derived from the decay curve of boscalid at double rate treatment. For example, $10.39\;mg\;kg^{-1}$ was calculated for 10 days before harvest, and $1.73\;mg\;kg^{-1}$ for 5 days. Dilution effect was major factor far the decrease of boscalid residue due to fast increasement of weight of cucumber during cultivation. Final residues level of boscalid was predicted based on the dissipation curve and guideline on safe use, when boscalid was used to control powdery mildew and gray mold. At standard rate application, $1.26\;mg\;kg^{-1}$ and $1.33\;mg\;kg^{-1}$ were calculated as final residue levels for control powdery mildew and gray mold, respectively, which are above the MRL(Meximum Residue Limit).